[スポンサーリンク]

化学者のつぶやき

アセタールで極性転換!CF3カルビニルラジカルの求核付加反応

[スポンサーリンク]

多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応が開発された。求核的なトリフルオロメチルアシルラジカル等価体の利用が本反応の鍵である。

求核的CF3カルビニルラジカルを用いたヒドロトリフルオロアセチル化

トリフルオロアセチル(CF3CO–, TFA)基は医薬品の代謝安定性や生物活性の向上に寄与することから、医薬品開発において近年注目を浴びている[1]。TFA基の導入法の一つとして、トリフルオロメチル(CF3)アシルラジカルを用いたオレフィンへのラジカル付加が挙げられる(図1A)。2021年、Katayevらは、無水トリフルオロ酢酸(TFAA)から生じたCF3アシルラジカルをオレフィンへ付加させ、オレフィンのトリフルオロアセチル化に成功した(図1B)[2]。求電子的であるCF3アシルラジカルは、電子豊富オレフィンと効率的に反応する[3]。一方で、電子不足オレフィンへのラジカル付加は困難であり、依然として達成されていなかった。

テンプル大学のKimらは、電子不足オレフィンへのCF3アシルラジカルの付加を達成するため、1,3-ジチアンによるカルボニルの極性転換に注目した(図1C)。1,3-ジチアンに強塩基を作用させて生じたカルボアニオンは、代表的なアシルアニオン等価体である。この極性転換を利用した例として、Xuらによる、イリジウム光触媒を用いた非環状アルコキシカルボン酸の電子不足オレフィンへのラジカル付加が報告されている[4]。以上のことから、CF3アシルラジカルのアセタール保護体であれば、アセタールの酸素原子からの電子の押し込みにより、電子不足オレフィンへの求核的なラジカル付加が可能であると予想された。

今回Kimらは、多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応の開発に成功した(図1D)。光触媒存在下、CF3カルビニルラジカルの電子不足オレフィンへの付加が進行した後、生成したアセタールの脱保護により、電子不足オレフィンへのTFA基の導入を達成した。

図1. (A) CF3アシルラジカルのオレフィンへの付加および反応性 (B) KatayevらによるオレフィンへのTFA基の導入 (C) ヒドロトリフルオロアセチル化の参考例 (D) オレフィンのヒドロトリフルオロアセチル化反応

 

“Hydrotrifluoroacetylation of Alkenes via Designer Masked Acyl Reagents”

Sangil Han, Kyra L. Samony, Rifat N. Nabi, Campbell A. Bache, and Daniel K. Kim J. Am. Chem. Soc. 2023, 145, 11530−11536.

DOI: 10.1021/jacs.3c04294

 

論文著者の紹介

研究者:Daniel K. Kim

研究者の経歴:

–2012                             B.S. in Chemistry, Gettysburg College, USA (Prof. Timothy Funk)

2012–2018                  Ph.D., University of California, Irvine, USA (Prof. Vy Dong)

2018–2020                  Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)

2020–                            Assistant Professor, Temple University, USA

研究内容:遷移金属触媒や生体触媒を用いた新規反応の開発

論文の概要

 DMF中、光触媒4CzIPNおよびCs2CO3存在下、カルボン酸1と電子不足オレフィン2456 nmLED光を照射すると、アセタール3が得られた(2A)。基質適用範囲を調査したところ、ピリジン(3a)やトリフルオロメチルピリジン(3b)、アミド基(3c)、スルホニル基(3d)、シアノ基(3e)をもつ一置換オレフィンや三置換オレフィン(3f)など種々の電子不足オレフィンに対して反応が進行した。

 次に、合成したアセタール3の脱保護を試みた(2B)3は通常のアセタールと異なり、HClなどのブレンステッド酸を用いた脱保護条件ではアセタールが除去できなかった。これは、CF3基の電子求引性により、CF3に隣接する炭素を中心とするスピロアセタール構造が安定化するためである[5]。アセタールの脱保護条件の検討の結果、BBr3が有効であることを見いだした。しかし、TFA基の高い電子求引性のため、生成物はケトンと水和物の混合物として得られた。

 本反応の推定反応機構を示す(2C)。まず、光触媒4CzIPN(5)が可視光照射により励起された後、*4CzIPN(6)による一電子酸化により、カルボキシレート1’からCF3カルビニルラジカル8が生成する。この8が電子不足オレフィンに付加して生じた中間体9を、4CzIPN·–(7)が還元し、カップリング体3aが得られると考えられる。

図2. (A) 本反応および基質適応範囲 (B) アセタール部位のカルボニルへの変換 (C) 推定反応機構

 

 以上、電子不足オレフィンに対して適用可能なヒドロトリフルオロアセチル化反応が開発された。今後本反応がTFA基をもつ医薬品開発に貢献することを期待したい。

参考文献

  1. (a) Jose, B.; Oniki, Y.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Novel Histone Deacetylase Inhibitors: Cyclic Tetrapeptide with Trifluoromethyl and Pentafluoroethyl Ketones. Bioorg. Med. Chem. Lett. 2004, 14, 5343–5346. DOI: 10.1016/j.bmcl.2004.08.016 (b) Stein, R. L.; Strimpler, A. M.; Edwards, P. D.; Lewis, J. J.; Mauger, R. C.; Schwartz, J. A.; Stein, M. M.; Trainor, D. A.; Wildonger, R. A.; Zottola, M. A. Mechanism of Slow-Binding Inhibition of Human Leukocyte Elastase by Trifluoromethyl Ketones. Biochemistry 1987, 26, 2682–2689. DOI: 10.1021/bi00384a005
  2. (a) Lu, B.; Xu, M.; Qi, X.; Jiang, M.; Xiao, W.-J.; Chen, J.-R. Switchable Radical Carbonylation by Philicity Regulation. J. Am. Chem. Soc. 2022, 144, 14923–14935. DOI: 10.1021/jacs.2c06677 (b) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 2007, 9, 2721–2724. DOI: 10.1021/ol071038k
  3. Zhang, K.; Rombach, D.; Nötel, N. Y.; Jeschke, G.; Katayev, D. Radical Trifluoroacetylation of Alkenes Triggered by a Visible-Light-Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angew. Chem., Int. Ed. 2021, 60, 22487–22495. DOI: 10.1002/anie.202109235
  4. Zhang, S.; Tan, Z.; Zhang, H.; Liu, J.; Xu, W.; Xu, K. An Ir-Photoredox-Catalyzed Decarboxylative Michael Addition of Glyoxylic Acid Acetal as a Formyl Equivalent. Chem. Commun. 2017, 53, 11642–11645. DOI: 10.1039/C7CC06252D
  5. Guthrie, J. P. Carbonyl Addition Reactions: Factors Affecting the Hydrate–Hemiacetal and Hemiacetal–Acetal Equilibrium Constants. Can. J. Chem. 1975, 53, 898–906. DOI: 10.1139/v75-125

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. リン–リン単結合を有する化合物のアルケンに対する1,2-付加反応…
  2. 非平衡な外部刺激応答材料を「自律化」する
  3. ケムステイブニングミキサー2019に参加しよう!
  4. (–)-Spirochensilide Aの不斉全合成
  5. 超原子価臭素試薬を用いた脂肪族C-Hアミノ化反応
  6. マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベ…
  7. ReaxysPrize2015ファイナリスト発表!
  8. 「化学の匠たち〜情熱と挑戦〜」(日本化学会春季年会市民公開講座)…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. プロパンチアールオキシド (propanethial S-oxide)
  2. 化学者だって数学するっつーの! :定常状態と変数分離
  3. 新しい量子化学 電子構造の理論入門
  4. 結晶構造と色の変化、有機光デバイス開発の強力ツール
  5. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくある失敗とその対策とは?
  6. 大学の学科がクラウドファンディング!?『化学の力を伝えたい』
  7. 分⼦のわずかな⾮対称性の偏りが増幅される現象を発⾒
  8. 秋の味覚「ぎんなん」に含まれる化合物
  9. JCRファーマとはどんな会社?
  10. トンネル効果が支配する有機化学反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた

bergです。この度は2023年9月8日(金)に慶応義塾大学 矢上キャンパスにて開催された西林教授の…

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP