[スポンサーリンク]

化学者のつぶやき

アセタールで極性転換!CF3カルビニルラジカルの求核付加反応

[スポンサーリンク]

多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応が開発された。求核的なトリフルオロメチルアシルラジカル等価体の利用が本反応の鍵である。

求核的CF3カルビニルラジカルを用いたヒドロトリフルオロアセチル化

トリフルオロアセチル(CF3CO–, TFA)基は医薬品の代謝安定性や生物活性の向上に寄与することから、医薬品開発において近年注目を浴びている[1]。TFA基の導入法の一つとして、トリフルオロメチル(CF3)アシルラジカルを用いたオレフィンへのラジカル付加が挙げられる(図1A)。2021年、Katayevらは、無水トリフルオロ酢酸(TFAA)から生じたCF3アシルラジカルをオレフィンへ付加させ、オレフィンのトリフルオロアセチル化に成功した(図1B)[2]。求電子的であるCF3アシルラジカルは、電子豊富オレフィンと効率的に反応する[3]。一方で、電子不足オレフィンへのラジカル付加は困難であり、依然として達成されていなかった。

テンプル大学のKimらは、電子不足オレフィンへのCF3アシルラジカルの付加を達成するため、1,3-ジチアンによるカルボニルの極性転換に注目した(図1C)。1,3-ジチアンに強塩基を作用させて生じたカルボアニオンは、代表的なアシルアニオン等価体である。この極性転換を利用した例として、Xuらによる、イリジウム光触媒を用いた非環状アルコキシカルボン酸の電子不足オレフィンへのラジカル付加が報告されている[4]。以上のことから、CF3アシルラジカルのアセタール保護体であれば、アセタールの酸素原子からの電子の押し込みにより、電子不足オレフィンへの求核的なラジカル付加が可能であると予想された。

今回Kimらは、多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応の開発に成功した(図1D)。光触媒存在下、CF3カルビニルラジカルの電子不足オレフィンへの付加が進行した後、生成したアセタールの脱保護により、電子不足オレフィンへのTFA基の導入を達成した。

図1. (A) CF3アシルラジカルのオレフィンへの付加および反応性 (B) KatayevらによるオレフィンへのTFA基の導入 (C) ヒドロトリフルオロアセチル化の参考例 (D) オレフィンのヒドロトリフルオロアセチル化反応

 

“Hydrotrifluoroacetylation of Alkenes via Designer Masked Acyl Reagents”

Sangil Han, Kyra L. Samony, Rifat N. Nabi, Campbell A. Bache, and Daniel K. Kim J. Am. Chem. Soc. 2023, 145, 11530−11536.

DOI: 10.1021/jacs.3c04294

 

論文著者の紹介

研究者:Daniel K. Kim

研究者の経歴:

–2012                             B.S. in Chemistry, Gettysburg College, USA (Prof. Timothy Funk)

2012–2018                  Ph.D., University of California, Irvine, USA (Prof. Vy Dong)

2018–2020                  Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)

2020–                            Assistant Professor, Temple University, USA

研究内容:遷移金属触媒や生体触媒を用いた新規反応の開発

論文の概要

 DMF中、光触媒4CzIPNおよびCs2CO3存在下、カルボン酸1と電子不足オレフィン2456 nmLED光を照射すると、アセタール3が得られた(2A)。基質適用範囲を調査したところ、ピリジン(3a)やトリフルオロメチルピリジン(3b)、アミド基(3c)、スルホニル基(3d)、シアノ基(3e)をもつ一置換オレフィンや三置換オレフィン(3f)など種々の電子不足オレフィンに対して反応が進行した。

 次に、合成したアセタール3の脱保護を試みた(2B)3は通常のアセタールと異なり、HClなどのブレンステッド酸を用いた脱保護条件ではアセタールが除去できなかった。これは、CF3基の電子求引性により、CF3に隣接する炭素を中心とするスピロアセタール構造が安定化するためである[5]。アセタールの脱保護条件の検討の結果、BBr3が有効であることを見いだした。しかし、TFA基の高い電子求引性のため、生成物はケトンと水和物の混合物として得られた。

 本反応の推定反応機構を示す(2C)。まず、光触媒4CzIPN(5)が可視光照射により励起された後、*4CzIPN(6)による一電子酸化により、カルボキシレート1’からCF3カルビニルラジカル8が生成する。この8が電子不足オレフィンに付加して生じた中間体9を、4CzIPN·–(7)が還元し、カップリング体3aが得られると考えられる。

図2. (A) 本反応および基質適応範囲 (B) アセタール部位のカルボニルへの変換 (C) 推定反応機構

 

 以上、電子不足オレフィンに対して適用可能なヒドロトリフルオロアセチル化反応が開発された。今後本反応がTFA基をもつ医薬品開発に貢献することを期待したい。

参考文献

  1. (a) Jose, B.; Oniki, Y.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Novel Histone Deacetylase Inhibitors: Cyclic Tetrapeptide with Trifluoromethyl and Pentafluoroethyl Ketones. Bioorg. Med. Chem. Lett. 2004, 14, 5343–5346. DOI: 10.1016/j.bmcl.2004.08.016 (b) Stein, R. L.; Strimpler, A. M.; Edwards, P. D.; Lewis, J. J.; Mauger, R. C.; Schwartz, J. A.; Stein, M. M.; Trainor, D. A.; Wildonger, R. A.; Zottola, M. A. Mechanism of Slow-Binding Inhibition of Human Leukocyte Elastase by Trifluoromethyl Ketones. Biochemistry 1987, 26, 2682–2689. DOI: 10.1021/bi00384a005
  2. (a) Lu, B.; Xu, M.; Qi, X.; Jiang, M.; Xiao, W.-J.; Chen, J.-R. Switchable Radical Carbonylation by Philicity Regulation. J. Am. Chem. Soc. 2022, 144, 14923–14935. DOI: 10.1021/jacs.2c06677 (b) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 2007, 9, 2721–2724. DOI: 10.1021/ol071038k
  3. Zhang, K.; Rombach, D.; Nötel, N. Y.; Jeschke, G.; Katayev, D. Radical Trifluoroacetylation of Alkenes Triggered by a Visible-Light-Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angew. Chem., Int. Ed. 2021, 60, 22487–22495. DOI: 10.1002/anie.202109235
  4. Zhang, S.; Tan, Z.; Zhang, H.; Liu, J.; Xu, W.; Xu, K. An Ir-Photoredox-Catalyzed Decarboxylative Michael Addition of Glyoxylic Acid Acetal as a Formyl Equivalent. Chem. Commun. 2017, 53, 11642–11645. DOI: 10.1039/C7CC06252D
  5. Guthrie, J. P. Carbonyl Addition Reactions: Factors Affecting the Hydrate–Hemiacetal and Hemiacetal–Acetal Equilibrium Constants. Can. J. Chem. 1975, 53, 898–906. DOI: 10.1139/v75-125
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. MOF の実用化のはなし【京大発のスタートアップ Atomis …
  2. 有機合成化学協会誌2021年3月号:水素抽出型化学変換・環骨格一…
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑦(解答編…
  4. 【8/31まで!!】マテリアルズ・インフォマティクスの基礎から実…
  5. 快適な研究環境を!実験イス試してみた
  6. 侯召民教授の講演を聴講してみた
  7. アルミニウム工業の黎明期の話 -Héroultと水力発電-
  8. 2012年分子生物学会/生化学会 ケムステキャンペーン

注目情報

ピックアップ記事

  1. 「石油化学」の新ネーミング募集!
  2. 化学者のランキング指標「h-index」 廃止へ
  3. 2017年(第33回)日本国際賞受賞者 講演会
  4. Organic Synthesis Workbook
  5. 水素結合の発見者は誰?
  6. 論文投稿・出版に役立つ! 10の記事
  7. 健康的なPC作業環境のすすめ
  8. ウルフ・デッツ反応 Wulff-Dotz Reaction
  9. CO2の資源利用を目指した新たなプラスチック合成法
  10. 小型質量分析装置expression® CMSを試してみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP