[スポンサーリンク]

chemglossary

原子間力顕微鏡 Atomic Force Microscope (AFM)

[スポンサーリンク]

原子間力顕微鏡(Atomic Force Microscopy;AFM)とは、走査型顕微鏡の一種である。試料と探針間に働く原子間力を検出することによって、試料表面を原子レベルで可視化する技術。

試料表面を探針(tip)でなぞると、試料との間に原子間力(引力)が生じる。その力の大きさをカンチレバー(Cantilever)の”たわみ”とし
て検出する。たわみ具合はレーザー光の反射角から精密に見積もることができる。このようにして、試料表面の凹凸を画像化する(下図)。同様
の測定ができる走査型電子顕微鏡(STM)に比べ、導電性のない材料にも適用可能という利点を持つのが特徴である。

非接触型原子間力顕微鏡(Non-contacting Atomic Force Microscope: NC-AFM)では、探針を試料上空で上下振動させて走査し、探針-試料間距離に応じて変化する振動パラメータ変化を検出する。分解能などさまざまな点で接触型よりも優れており、原子レベルの解像度を誇る。

AFM_1.gif
(画像:Aglient.com)

2009年にIBMの研究者らは、一酸化炭素(CO)を先端に結合させた探針を用い、NC-AFMの分解能を大幅に向上させることに成功した[1]。分子軌道が存在する場所においては、CO分子との間にパウリの排他原理に基づく斥力が働くため、これを検出することで、化学結合までをも可視化できるようになった。以下の写真は彼らのグループによって撮影されたペンタセン分子のをAFM像である。

AFM_pentacene_1.jpg

鮮明なAFM画像を撮影するには、ノイズの影響を最小限にすべく、超高真空・極低温で測定を行う必要がある。

 

関連文献

[1] “The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy”

L. Gross et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210

Resolving individual atoms has always been the ultimate goal of surface microscopy. The scanning tunneling microscope images atomic-scale features on surfaces, but resolving single atoms within an adsorbed molecule remains a great challenge because the tunneling current is primarily sensitive to the local electron density of states close to the Fermi level. We demonstrate imaging of molecules with unprecedented atomic resolution by probing the short-range chemical forces with use of noncontact atomic force microscopy. The key step is functionalizing the microscope’s tip apex with suitable, atomically well-defined terminations, such as CO molecules. Our experimental findings are corroborated by ab initio density functional theory calculations. Comparison with theory shows that Pauli repulsion is the source of the atomic resolution, whereas van der Waals and electrostatic forces only add a diffuse attractive background.

 

関連書籍

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. メソリティック開裂 mesolytic cleavage
  2. レドックスフロー電池 Redox-Flow Battery, R…
  3. NMR管
  4. ポットエコノミー Pot Economy
  5. 徹底比較 特許と論文の違い ~明細書、審査編~
  6. 高速液体クロマトグラフィ / high performance …
  7. E値 Environmental(E)-factor
  8. 二重可変領域抗体 Dual Variable Domain Im…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 北大触媒化研、水素製造コスト2―3割安く
  2. 大麻から作られる医薬品がアメリカでオーファンドラッグとして認証へ
  3. エンテロシン Enterocin
  4. 東京大学大学院理学系研究科化学専攻 大学院入試情報
  5. メタンハイドレートの化学 ~その2~
  6. ルーブ・ゴールドバーグ反応 その2
  7. 塗る、刷る、printable!進化するナノインクと先端デバイス技術~無機材料と印刷技術で変わる工業プロセス~
  8. 企業の研究を通して感じたこと
  9. 分子の動きを電子顕微鏡で観察
  10. ウルフ賞化学部門―受賞者一覧

関連商品

注目情報

注目情報

最新記事

「日産化学」ってどんな会社?

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギルオキシム・塩メタセシス反応・架橋型人工核酸・環状ポリアリレン・1,3-双極子付加環化反応

有機合成化学協会が発行する有機合成化学協会誌、2019年10月号がオンライン公開されました。…

有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リケラボコラボレーション)

以前お知らせしたとおり理系の理想の働き方を考える研究所「リケラボ」とコラボレーションして、特集記事を…

2019年ノーベル化学賞は「リチウムイオン電池」に!

スウェーデン王立科学アカデミーは9日、2019年のノーベル化学賞を、リチウムイオン電池を開発した旭化…

マテリアルズインフォマティクスでリチウムイオン電池の有機電極材料を探索する

第223回のスポットライトリサーチは、沼澤 博道さんにお願い致しました(トップ画像は論文から出典)。…

米陸軍に化学薬品検出スプレーを納入へ

米センサー・システムのフリアーシステムズは、化学兵器として使用されるマスタードガスなどを検出するスプ…

Chem-Station Twitter

PAGE TOP