[スポンサーリンク]

chemglossary

原子間力顕微鏡 Atomic Force Microscope (AFM)

[スポンサーリンク]

原子間力顕微鏡(Atomic Force Microscopy;AFM)とは、走査型顕微鏡の一種である。試料と探針間に働く原子間力を検出することによって、試料表面を原子レベルで可視化する技術。

試料表面を探針(tip)でなぞると、試料との間に原子間力(引力)が生じる。その力の大きさをカンチレバー(Cantilever)の”たわみ”とし
て検出する。たわみ具合はレーザー光の反射角から精密に見積もることができる。このようにして、試料表面の凹凸を画像化する(下図)。同様
の測定ができる走査型電子顕微鏡(STM)に比べ、導電性のない材料にも適用可能という利点を持つのが特徴である。

非接触型原子間力顕微鏡(Non-contacting Atomic Force Microscope: NC-AFM)では、探針を試料上空で上下振動させて走査し、探針-試料間距離に応じて変化する振動パラメータ変化を検出する。分解能などさまざまな点で接触型よりも優れており、原子レベルの解像度を誇る。

AFM_1.gif
(画像:Aglient.com)

2009年にIBMの研究者らは、一酸化炭素(CO)を先端に結合させた探針を用い、NC-AFMの分解能を大幅に向上させることに成功した[1]。分子軌道が存在する場所においては、CO分子との間にパウリの排他原理に基づく斥力が働くため、これを検出することで、化学結合までをも可視化できるようになった。以下の写真は彼らのグループによって撮影されたペンタセン分子のをAFM像である。

AFM_pentacene_1.jpg

鮮明なAFM画像を撮影するには、ノイズの影響を最小限にすべく、超高真空・極低温で測定を行う必要がある。

 

関連文献

[1] “The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy”

L. Gross et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210

Resolving individual atoms has always been the ultimate goal of surface microscopy. The scanning tunneling microscope images atomic-scale features on surfaces, but resolving single atoms within an adsorbed molecule remains a great challenge because the tunneling current is primarily sensitive to the local electron density of states close to the Fermi level. We demonstrate imaging of molecules with unprecedented atomic resolution by probing the short-range chemical forces with use of noncontact atomic force microscopy. The key step is functionalizing the microscope’s tip apex with suitable, atomically well-defined terminations, such as CO molecules. Our experimental findings are corroborated by ab initio density functional theory calculations. Comparison with theory shows that Pauli repulsion is the source of the atomic resolution, whereas van der Waals and electrostatic forces only add a diffuse attractive background.

 

関連書籍

[amazonjs asin=”4769311931″ locale=”JP” title=”はじめてのナノプローブ技術 (ビギナーズブックス (18))”][amazonjs asin=”B00IUBVKCS” locale=”JP” title=”Atomic Force Microscopy”][amazonjs asin=”0470638826″ locale=”JP” title=”Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications”]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ポリメラーゼ連鎖反応 polymerase chain reac…
  2. 有機EL organic electroluminescence…
  3. メビウス芳香族性 Mobius aromacity
  4. 抗体触媒 / Catalytic Antibody
  5. フラストレイティド・ルイスペア Frustrated Lewis…
  6. 熱活性化遅延蛍光 Thermally Activated Del…
  7. 秘密保持契約(NDA)
  8. 多成分連結反応 Multicomponent Reaction…

注目情報

ピックアップ記事

  1. 核酸医薬の物語1「化学と生物学が交差するとき」
  2. 科学を伝える-サイエンスコミュニケーターのお仕事-梅村綾子さん
  3. 危険物取扱者:記事まとめ
  4. 若手&高分子を専門としていない人のための『速習 高分子化学 入門』【終了】
  5. レーザー光で実現する新たな多結晶形成法
  6. 高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして
  7. 研究者の成長を予測できる?:JDream Expert Finder
  8. コルベ電解反応 Kolbe Electrolysis
  9. 薄くて巻ける有機ELディスプレー・京大など開発
  10. 2007年度ノーベル化学賞を予想!(4)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP