[スポンサーリンク]

スポットライトリサーチ

理論的手法を用いた結晶内における三重項エネルギーの流れの観測

[スポンサーリンク]

第188回のスポットライトリサーチは、筑波大学 生命物理研究グループ 重田研究室で特別研究員を務められていた、佐藤竜馬(さとう りゅうま)さんにお願いしました! 佐藤さんは現在は基礎科学特別研究員として理化学研究所に在籍されています。

重田研究室は、主に生命現象の分子レベルでの理解という挑戦的な課題に、計算科学からアプローチしている研究室です。今回紹介いただける内容は生命現象ではありませんが、フォトンアップコンバージョンを示す光応答性材料という多自由度複雑系の裏に潜む原理を、計算科学により明らかにしたという素晴らしい成果です。

長波長、低エネルギーの光を如何にして有効利用するかという課題はエネルギー問題の解決の糸口になる重要問題です。光励起後に分子集合体中で生じる三重項励起状態(T1)は長寿命であり、上手く分子を設計するとT1同士が衝突したときに高エネルギー励起状態を生じることが知られています。これを利用した光エネルギーのアップコンバージョンに関する今回ご紹介いただける成果です。どのように分子を配列させれば設計すれば効率よくアップコンバージョンを起こせるか、といった問いに対して計算科学による検討から直感的なピクチャーを提示されています。本成果はJ. Phys. Chem. Lett.誌に掲載されており、筑波大学からプレスリリースもされています。

“Synergetic Effects of Triplet–Triplet Annihilation and Directional Triplet Exciton Migration in Organic Crystals for Photon Upconversion”
Ryuma Sato, Hirotaka Kitoh-Nishioka, Kenji Kamada, Toshiko Mizokuro, Kenji Kobayashi, & Yasuteru Shigeta
J. Phys. Chem. Lett. 2018, 9, 6638-6643. DOI: 10.1021/acs.jpclett.8b02887

重田育照(しげた やすてる)先生からは、佐藤竜馬さんと本研究成果について以下のようにコメントをいただいています。

佐藤竜馬さんのご専門は「光生物物理学」でして、最初は私の研究室に学術振興会博士研究員(PD)の受け入れ先としてコンタクトして頂きました。6月末に学位を取得するということでしたので、これをいい出会いの機会と考えまして、7月に新学術領域研究「高次光応答分子」の博士研究員として筑波大に来ていただきました。そのメインテーマが本研究の3重項消光アップコンバージョン(TTA-UC)でした。TTA-UCは太陽光利用の機構として近年大きな注目を集めている過程で、これまで確たる解析手法は確立しておりませんでした。特に実際のデバイスへの展開のためには、空気中・固体系・近赤外光の3つのチャレンジがありましたが、その分子設計のためにはメカニズムの解明が必須です。佐藤さんは光生物物理学の研究で培った知見を十二分に発揮いただき、解析手法の確立(Chem. Lett. 46, 873 (2017))、溶液系での高効率TTA-UCの機構解明(J. Phys. Chem. C 122, 5334(2018))、さらに、今回の固体系の機構解明につながりました。TTA-UCの研究に加えて佐藤さんには、ご自身のテーマで主著2件、共同研究の共著として11件の論文の研究に関わっていただきました。残念ながら学振PDは採択されなかったのですが、2018年度より理化学研究所基礎特別研究員として創薬分野で活躍されております。今後ますますの活躍を期待しています。

それでは、佐藤さんからのメッセージをどうぞ!

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?

現在、エネルギー問題の解決に向けた取り組みが多くなされています。なかでも地球上に多量に降り注ぐほぼ無限とも考えられる太陽光のエネルギーを私たち人間が効率的に利用できればエネルギー問題解決の一助となると考えられています。そこで、太陽光に多く含まれている長波長領域に属する赤外-近赤外光(エネルギーが低い)を短波長領域に属する紫外-可視光(エネルギーが高い)に変換して利用する試みとして三重項-三重項消滅に基づくフォトンアップコンバージョン(TTA-UC)機構が注目されています(図1)。これまでに溶液系におけるTTA-UCの研究は大変重要な成功を収めてきました。一方で結晶系のような固体系におけるTTA-UC機構には謎が多く存在しています。

図1. 三重項-三重項消滅に基づくフォトンアップコンバージョン機構. ここでS0とS1は基底状態と第一励起状態を表し、T1は励起三重項状態を表す. 添字のDとAはドナーとアクセプターを意味する.

我々の研究グループではTTA-UCが生じることが実験で確認されている分子(9,10-ジフェニルアントラセン:DPA)の結晶構造とDPAからの派生分子であるC7-sDPA(DPAの二つのフェニル基をアルキル鎖で架橋した分子)の結晶構造に対して量子化学計算を駆使して、それらの反応機構の観測を試みました。結果としてDPAの結晶においては三重項エネルギーが隣り合う分子間を次々に移動していくのに対して、C7-sDPAの結晶では決まった方向にだけ三重項エネルギーが移動しうることを明らかにしました(図2)。したがって、実験においてC7-sDPAがDPAよりも反応効率が良い理由の一つとして、C7-sDPAのほうが三重項状態が接近しやすいためであることが示唆できました。

図2. 三重項励起子の拡散の仕方の違い.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

この研究は量子化学計算と呼ばれる計算手法を用いて遂行しています。特に今回は完全活性空間self-consistent field法(CASSCF法)と呼ばれる手法を用いていますが、このCASSCF法はその計算アルゴリズムの性質上、SCFが収束しないことが多々あります。実際、この研究におきましても何も考えずに計算を走らせてしまうとSCFが収束しないという問題にぶつかりました。いろいろ計算条件を試行錯誤して、SCFが収束する条件が見つかったときは胸を撫で下ろしました。当時私が計算可能だった手法で、この研究に求められていた結果を得るための手法はCASSCF法しかなく、この計算が上手くいかないと研究を遂行することもままならなかったためです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

上述したようにこの研究で観測したいことを観測するうえで、私が使用できる計算手法に制限があり、その手法が上手くいかないと詰まってしまうという点が大きなプレッシャーでした。しかし、無事論文という形で一つの成果とできたのには共同研究者の皆様の多大なるご尽力があってのことです。特に計算の観点で多大なる貢献をして下さったのは共著者でもある鬼頭-西岡宏任氏でした。実際のところ、この研究で使用しているCASSCF法と4-foldway法を組み合わせることで私が計算したいことが計算できると教えて下さったのも鬼頭-西岡氏でした。私と共にトライアルアンドエラーを繰り返し、その都度アドバイスをして下さったことで無事この研究を完遂することができました。

Q4. 将来は化学とどう関わっていきたいですか?

私は自身の研究成果が世のため、人のためになることを期待して日頃から研究に従事しています。化学はこれまで世の中に存在していなかったものを作り出してきました。そして、それにより人々の暮らしは豊かになっています。化学を学び、応用することで、これまでできなかったことを可能とし、現在生じている問題を解決できると信じ今後も精進していきたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究を行なっていると必ず大きな壁にぶつかります。恐らくこれまで自分が誰よりもその研究テーマに真摯に向き合ってきたという自負もあり周囲の人に相談することを躊躇ってしまうこともあるかと思います。しかし、自分ひとりで悩んでいても解決できなかった問題が周囲に相談した結果、あっさり解決することはよくあります。それは先生、先輩や同僚と議論したときだけでなく後輩と議論することでも起こり得ることです。何かに行き詰まってしまったときは役職や年齢、分野などは考えずに色々な人に相談してみると問題解決への近道になるのではないかと思います。周囲には自分の知らないことを知っている人は本当に沢山います。知らないことは恥ずかしいことではありませんし、そのときにきちんと学ぶことが大切だと思います。そして、自分が相談されたときにこれまで自分が得た知識を役立てられたら素敵なことだと思います。たくさんの人とコミュニケーションをとって自分の知識の幅を広げていくといつか想像もしなかったことを実現できるかもしれません。

関連リンク

研究者の略歴

佐藤 竜馬(さとう りゅうま)

所属:理化学研究所 生命科学研究センター 計算分子設計研究チーム 基礎科学特別研究員

専門:生物物理学、分子シミュレーション

略歴:1985年、新潟県長岡市生まれ。2015年、名古屋大学大学院理学研究科物質理学専攻(物理系)博士後期課程修了。博士(理学)。2015年、筑波大学計算科学研究センター 研究員。2018年4月より現職。

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 有機合成化学協会誌2020年6月号:Chaxine 類・前周期遷…
  2. もし炭素原子の手が6本あったら
  3. ノーベル賞受賞者と語り合おう!「第16回HOPEミーティング」参…
  4. 量子コンピューターによるヒュッケル分子軌道計算
  5. シャンパンの泡、脱気の泡
  6. 化学にインスパイアされたジュエリー
  7. 【第48回有機金属化学セミナー】講習会:ものづくりに使える触媒反…
  8. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン

注目情報

ピックアップ記事

  1. 化学は切手と縁が深い
  2. 海外の教授にメールを送る-使える英語表現と文例
  3. ナフサ、25年ぶり高値・4―6月国産価格
  4. 危険物データベース:危険物に関する基礎知識
  5. ボーチ還元的アミノ化反応 Borch Reductive Amination
  6. ケムステV年末ライブ2023を開催します!
  7. 超分子カプセル内包型発光性金属錯体の創製
  8. 岩塩と蛍石ユニットを有する層状ビスマス酸塩化物の構造解析とトポケミカルフッ化反応によるその光触媒活性の向上
  9. 還元的にアルケンを炭素官能基で修飾する
  10. 新しい太陽電池ーペロブスカイト太陽電池とは

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP