[スポンサーリンク]

ケムステニュース

2007年ノーベル医学・生理学賞発表

[スポンサーリンク]

nobel
?

スウェーデンのカロリンスカ医科大学は8日、今年のノーベル医学生理学賞をマリオ・カペッキ氏、オリバー・スミシーズ氏、マーチン・エバンス氏の3人に贈ると発表した。マウスの胚(はい)性幹細胞(ES細胞)の発見と、哺乳(ほにゅう)類の遺伝子操作を通して、ひとの病気の解明に貢献した業績が評価された。  賞金は1000万クローナ(約1億8000万円)で、受賞者で分ける。授賞式は12月10日、ストックホルムで開かれる。 (引用:asahi.com)

 

受賞理由は“for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells” (胚性幹細胞を用いるマウスの標的遺伝子改変法における原理的発見について)です。

 

 今回の受賞者である、マリオ・カペッキ(Mario R. Capecchi), マーティン・エヴァンス(Sir Martin Evans), オリバー・スミシーズ(Oliver Smithies)の3名は、特定の標的遺伝子だけを選択的に機能停止させた実験動物である、「ノックアウトマウス」を作製することに世界で初めて成功しました。

 ノックアウトマウスは遺伝子の働きを調べたり、新薬の効果を調べたりするのに利用されています。例えば、機能のわからない遺伝子が見つかった場合、遺伝子操作によって、その遺伝子を働かなく(ノックアウト)したマウスを作ります。ノックアウトマウスと正常なマウスを比較すれば、その機能の異常が見つかることになります。

 

異常の起こった原因は必然、欠損遺伝子にあることが推測されますので、遺伝子の機能の解明に結びつくことになります。また、生まれつき高血圧になるようなノックアウトマウスを作り、新薬の高血圧への効果の有無の判定などにも利用するなど、様々な医学的な貢献があげられます。

ノックアウトマウスを作るにあたっては、胚性幹細胞(ES細胞)が用いられます。受精卵は細胞分裂を繰り返し、しばらくたつと様々な臓器・器官・組織へとそれぞれ変化(分化)しはじめ、生物を形作っていきます。ES細胞は、未分化の段階で大量培養した細胞株のことで、あらゆるタイプの細胞に変化可能という性質(分化全能性)をもちます。この性質が哺乳動物の遺伝子改変を行う上で大変重要なのです。

 

ES細胞に特定の加工を施したベクター(プラスミドという環状DNAを加工して作った遺伝子の運び屋)を注入してやると、細胞内部で標的遺伝子と一定の確率で相同組み替えを起こします(この組み替え原理自体は酵素などで既に確立されていました)。?組み替えを起こしたES細胞だけを選別し、胚細胞に注入後、親マウスの子宮に導入すれば、遺伝子改変を起こしたマウス(キメラマウス)が生まれてきます。このキメラマウスと正常マウスを交配させることで、ノックアウトマウスをつくることができます。

 

遺伝子相同組み換えの効率はあまり良くないうえ、二世代のマウス交配を必要とするため、ノックアウトマウス作成は大変手間のかかる作業になっています。これに代わりうる技術としては、前年ノーベル医学生理学賞を授与されたRNA干渉(RNAi)が挙げられます(RNAi – Wikipedia)。こちらはより簡便に標的遺伝子の機能を停止(ノックダウン)させることができるため、研究現場において大変重宝されています。とはいえRNAiによる遺伝子停止は完璧ではないので、遺伝子・生体レベルでの疑いなき対照実験を可能とするノックアウトマウスは、現代でもスタンダードな手法とされています。

以下、受賞者について簡単に紹介してみましょう。

 

マリオ・カペッキ(Mario R. Capecchi)

nobel

Distinguished Professor of Biology and Human Genetics and Co-Chairman
Eccles Institute of Human Genetics, University of Utah
Salt Lake City, UT
Howard Hughes Medical Investigator (米国)

 

カペッキ氏(70歳)はユタ大学教授。生物学において世界で広く用いられているES細胞を応用したジーンターゲティング法(標的組み換え法)を開発しました。さらに、任意の遺伝子の機能を欠いたマウス、いわゆるノックアウトマウスを作成して、遺伝子の働きを研究する道を確立しました。

 

マーティン・エヴァンス(Sir Martin Evans)

nobel

Director of the School of Biosciences and Professor of Mammalian Genetics
Cardiff University
Cardiff, Wales, UK (イギリス)

エバンス教授らは1981年に受精3.5日目のマウス胚盤胞の内部細胞塊を in vitro で培養に移し、細胞塊の解離と継代を繰り返すことにより、多分化能(pluripotency)を保持し、正常核を維持したまま無制限に増殖しつづける幹細胞、すなわちES細胞(Embryonic Stem cells)の樹立に成功しました。再生医療への応用にも注目されています。

 

オリバー・スミシーズ(Oliver Smithies)

 

nobel

 

Excellence Professor, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine
Chapel Hill, NC (米国)

1985 年にジーンターゲティング法という、現在の分子生物学を支える根幹的な技術を発明した、世界的に有名な科学者です(Smithies, O. et al. Nature 1985, 317, 230―234).

 

トムソンの2006年ノーベル生理・医学賞予想でも挙げられていたこの3名は、ウルフ賞やガードナー賞、京都賞、ラスカー賞などの名誉ある国際賞を揃って受賞しており、ノーベル賞の鉄板候補でした。RNAiよりも遅れた今回の受賞は遅すぎるとの声も聞こえるぐらい、待ちに待った受賞といえます。ご受賞おめでとうございます。

 

外部リンク

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2016年化学10大ニュース
  2. 化学ベンチャーが食品/医薬/化粧品業界向けに温度検知ゲル「The…
  3. 天然の日焼け止め?
  4. エストロゲン、閉経を境に正反対の作用
  5. 三井化学が進める異業種との協業
  6. 三菱ケミカルと三井化学がバイオマス原料由来ポリエステルの関連特許…
  7. 新日石、地下資源開発に3年で2000億円投資
  8. 「さびない鉄」産業界熱視線

注目情報

ピックアップ記事

  1. 第151回―「生体における金属の新たな活用法を模索する」Matthew Hartings准教授
  2. 植物改良の薬開発 金大・染井教授 根を伸ばす薬剤や、落果防止のものも
  3. ワートン反応 Wharton Reaction
  4. 「超分子ポリマーを精密につくる」ヴュルツブルク大学・Würthner研より
  5. 光で脳/神経科学に革命を起こす「オプトジェネティクス」
  6. ニトリル手袋は有機溶媒に弱い?
  7. 穴の空いた液体
  8. 第96回日本化学会付設展示会ケムステキャンペーン!Part III
  9. 右田・小杉・スティル クロスカップリング Migita-Kosugi-Stille Cross Coupling
  10. 第15回 触媒の力で斬新な炭素骨格構築 中尾 佳亮講師

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP