[スポンサーリンク]

ケムステニュース

混ぜるだけで簡単に作製でき、傷が素早く自己修復する透明防曇皮膜

[スポンサーリンク]

国立研究開発法人 産業技術総合研究所  極限機能材料研究部門 材料表界面グループ 佐藤 知哉 主任研究員、穂積 篤 研究グループ長は、防曇性が長期間持続し、傷が素早く自己修復する透明皮膜を簡便に作製する手法を開発しました。市販の原料を最適組成で混合するだけの極めて簡便な手法で作製が可能な上、これまで24~48時間かかっていた物理的な傷の自己修復を3時間まで短縮することができます。この技術により、レンズやガラスといった透明基材の曇りを長期間、抑制することが可能になり、使用者の視認性/安全性の向上や医療/分析機器、センサー、太陽光パネルなどの効率低下を防ぐ効果が期待されます。(産総研プレスリリース8月8日)

今回紹介するのはAISTから発表された論文で、優れた防曇性と自己修復性を持つコンポジット皮膜についてです。メガネやカメラのレンズなどで需要が高い防曇コーティングは、ひどく曇る条件においては超親水性を活用する手法が実用的だと考えられており、様々な超撥水性コーティング方法が開発されてきました。しかしながら従来の方法ではコーティングに時間がかかったり、複雑な形状に対しては耐久性が弱かったり、そして何より表面がダメージを受けると機能が永久に失われてしまうという欠点があります。そのため、超親水性での防曇性を持ちながら自己修復性を持つコーティング技術の開発が行われてきました。

既報の自己修復性を持つ防曇皮膜の中で、ポリビニルピロリドン(PVP)にアミノプロピル修飾ナノクレイ粒子(AMP-NCPs)を添加する方法では、水を吸収することでポリマーマトリックスが動いて機械的なダメージを自己修復できることが示されています。しかしながら、湿度80%以上でも修復には1日から2日かかるため改善の余地があり、弱い水素結合を増やすことで自己修復能を大きく向上できると予測されています。そこで本研究では、様々な分子量のPVPとナノクレイ粒子(NCP)、末端アミノ修飾オルガノシラン(AOS)を使用し、その配合を変えることで防曇性や自己修復性の最適化を行いました。

先行研究の結果(出典:産総研プレスリリース

使用したPVPとNCP, AOSは市販品で、NCP, AOS, PVPの順で水溶液に添加と撹拌を繰り返し、その混合液をスピンコーティングで各種基板に塗布しました。塗布後は100℃1時間の加熱で架橋を促進させました。まずAOSの濃度については、PVPに対して1%以下であるとスムースでかつ高い光学透過度を示すことが分かりました。PVPについては、MWが55kと360k, 1300kの三種類でコンポジットの合成を試みましたが、360kと1300kでは、条件を最適化しても不透明で灰色がかってしまい高品質な膜を作ることができませんでした。この理由について、PVP溶液が高粘度であり望ましくない凝集が起きていると推測しています。このようにAOSの濃度とPVPの分子量を最適化したコンポジット皮膜を無機材料やポリマーの基板に塗布したところ密着性は高く、ポリマー基板に対して1000サイクルの曲げテストを行っても剥離やクラックは見られませんでした。

開発したナノコンポジット皮膜で被覆した各種有機/無機基材の外観(出典:産総研プレスリリース

防曇性については、ガラスを10分間4℃で冷却した後、室温湿度60%以上の実験室に出したところ、コンポジット皮膜なしでは直ちにガラスが曇るもののコンポジット皮膜ありでは曇りませんでした。さらにガラスを加湿器の空気に当てたり、80 ℃のお湯が入ったビーカーの直上に置いたり、加湿器を設置したグローブボックス内で7日間静置したりと過酷な条件でも曇らず、コンポジット皮膜の防曇性が示されました。

(a) 冷蔵庫で4 ℃に冷却した後、高湿度空気に暴露、 (b) 加湿器の噴出孔付近で10秒間暴露、 (c) 高温高湿度空気 (ビーカーに入れた80 ℃のお湯の直上) に一定時間暴露、および (d) 高湿度環境下 (加湿器を設置したグローブボックス内、室温、相対湿度80%以上) に7日間静置(出典:産総研プレスリリース

次に自己修復性を評価しました。コンポジット皮膜に外科用メスで傷 (最大幅で約30 μm)をつけ、湿度80%以上の環境で静置したところ、徐々に傷がぼやけ、数時間で完全に修復されました。先行研究では同じ膜厚で修復に1日から2日かかっており、この自己修復性の向上は、より低い分子量のPVPを使用したことにより移動度と弱い水素結合の割合の上昇によるものだとしています。さらにこの自己修復性は繰り返し発揮し、何度傷をつけても完全に元に戻ることが実験で確認されました。

従来技術(上)および新技術(下)で作製したナノコンポジット皮膜の表面につけた傷の修復過程を示す光学顕微鏡像および (b) ナノコンポジット皮膜の自己修復推定メカニズム(出典:産総研プレスリリース

さらに膜の密着性と機械強度を向上させるためにSiO2ナノフレームワーク(SNF)を施したガラス基板にコンポジット皮膜を塗布しました。具体的にはUVとオゾン照射できれいにした基板を減圧UV照射下でTEOSの蒸気に曝しSNFを施しました。防曇性についてはSNFあり・なしで大きな違いは見られませんでした。次に砂を基板に落としてダメージを与える落砂試験を繰り返し行い、透過性の変化を見たところ、SNFなしでは透過性の回復が鈍くなるものの、SNFありでは、五回のサイクル後でも試験前の透過率の80%以上まで回復することが確認されました。この原因について、SNFとコンポジットに何か相互作用があるからではないかと論文中ではコメントされています。

結果として先行研究より高い自己修復能を持つコンポジット材料の開発に成功しました。本研究では、インテグラルブレンド法と呼ばれる無機フィラーや微粒子表面の修飾と高分子中へのそれらの均一分散を同時に行う方法でコンポジットが合成させており、クレイ粒子の前処理が不要となっただけでなく、シランカップリング剤の添加量を調整するだけで、皮膜中の水素結合と静電相互作用との比率を任意に制御することができます。この方法は他の応用でも便利なアプローチだと主張しています。

今、市販されている製品にどのような防曇コーティングがなされているか分かりませんが、メガネや車の窓など活用できる場面は多いと思いました。特にメガネはマスクですぐに曇るだけでなく、細かい傷がつきやすく、最適な応用先だと予想されます。また、溶液で塗布できるのであれば、お手入れのための製品として消費者自身が塗布するようなタイプの製品としても販売できるかもしれません。一方で長期間、屋外で使用する用途を考えると、紫外線によってコンポジット皮膜の有機物の成分が劣化しないかが気になるところです。今後の応用環境での評価と実用化に期待します。

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 製薬外資、日本へ攻勢 高齢化で膨らむ市場
  2. 住友チタニウム、スポンジチタン生産能力を3割増強
  3. 兵庫で3人が農薬中毒 中国産ギョーザ食べる
  4. 骨粗鬆症、骨破壊止める化合物発見 理研など新薬研究へ
  5. 武田薬品、高血圧治療剤が米で心不全の効能追加
  6. DNAに電流通るーミクロの電子デバイスに道
  7. ハーバード大Whitesides教授がWelch Awardを受…
  8. 抗菌目薬あす発売 富山化学工業 国内初の小児適用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ジョナス・ピータース Jonas C. Peters
  2. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成功
  3. 光レドックス触媒と有機分子触媒の協同作用
  4. 2016 SciFinder Future Leadersプログラム参加のススメ
  5. 活性二酸化マンガン Activated Manganese Dioxide (MnO2)
  6. アントニオ・M・エチャヴァレン Antonio M. Echavarren
  7. 第58回―「集積構造体を生み出すポリマー合成」Barney Grubbs教授
  8. MOF 結晶表面の敏感な応答をリアルタイム観察
  9. 超大画面ディスプレイ(シプラ)実現へ
  10. ボールマン・ラーツ ピリジン合成 Bohlmann-Rahtz Pyridine Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!

2022年のノーベル化学賞は「クリックケミストリーと生体直交化学」の開発業績で、バリー・シャープレス…

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木…

アセトアミノフェン Acetaminophen

 アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタ…

不安定な高分子原料を従来に比べて 50 倍安定化することに成功! ~水中での化学反応・材料合成に利用可能、有機溶媒の大幅削減による脱炭素に貢献~

第424回のスポットライトリサーチは、京都工芸繊維大学大学院工芸科学研究科 バイオベースマテリアル学…

【10月開催】マイクロ波化学ウェブセミナー

<内容>今月もテーマを分けて2回開催いたします。第一…

越野 広雪 Hiroyuki Koshino

越野 広雪(こしの ひろゆき)は、NMRやマススペクトルなどのもとにした有機分子の構造解析を専門とす…

bassler ボニー・L.・バスラー Bonnie L. Bassler

ボニー・L.・バスラー (Bonnie Lynn Bassler , 1962年XX月XX日-)は、…

電子を閉じ込める箱: 全フッ素化キュバンの合成

第 423 回のスポットライトリサーチは、東京大学 工学系研究科 化学生命工学専…

プラズモンTLC:光の力でナノ粒子を自在に選別できる新原理クロマトグラフィー

第422回のスポットライトリサーチは、名古屋大学 大学院工学研究科 鳥本研究室の秋吉 一孝 (あきよ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2022/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP