[スポンサーリンク]

ケムステニュース

様々な化学分野におけるAIの活用

[スポンサーリンク]

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精製・石油化学プラントを自動運転するAIシステムの常時使用をENEOS川崎製油所石油化学プラント内のブタジエン抽出装置で開始し、手動操作を超える経済的で高効率な運転を達成しましたので、お知らせいたします。同AIシステムは、大規模かつ複雑であり、長年の経験に基づいた運転ノウハウが求められるプラントを自動運転するシステムとしてENEOSとPFNが共同開発したものです。 (引用:8月10日Preferred Networksニュースリリース)

サンスターグループは、化学物質が皮膚に接触した場合にアレルギー反応を引き起こすリスクを評価する試験(皮膚感作性試験)において、アレルギーが誘発される強度を予測するAIを独自に開発しました。皮膚感作性は従来、動物実験によって評価されてきました。しかし近年では、動物愛護の観点から、動物を使用しない試験方法の開発が強く求められています。今回開発したAIでは、動物実験を実施せずに化学物質の皮膚感作性強度を予測することができます。(引用:8月21日PR TIMES)

データケミカル株式会社は、同社が展開する化学分野のAI・機械学習クラウドサービス「Datachemical LAB(データケミカルラボ)」にて、汎用的に変数重要度を計算する機能を2023年8月17日よりリリースしました。(引用:8月22日TECHABLE)

1件目のプレスリリースは、2022年3月にケムステニュースで紹介したブタジエン抽出装置の自動運転の続きについてです。ENEOSとPFNでは、化学プラントのAIによる自動運転に取り組んでおり、2021年12月にはブタジエン抽出装置の2日間の自動運転に成功しました。そして2023年1月に手動操作を超える経済的で高効率な運転を達成しました。

この自動運転では、プラント内の温度、圧力、流量および製品性状などの13個の運転重要因子の常時監視9個のバルブ同時操作に加えて、363個の入力センサーを用いた予測を行うことでプラントの自動運転を行いました。

下の図はプラント自動運転AIシステム稼働前後の運転重要因子(製品性状値)の制御性ですが、手動操作とAI操作を比べると運転重要因子の振れが小さく、バルブ開度の変動も細かいことが分かります。結果、装置全域に対して運転変動を安定化させると共に、手動操作を超える経済的で効率的な運転を達成しました。

プラント自動運転AIシステム稼働前後の運転重要因子(製品性状値)の制御性(出典:Preferred Networksニュースリリース)

現在は、常圧蒸留装置などの他プラントの自動最適化AIシステムの開発も実施しており、今後ENEOSの他製油所への展開とシステムの他社への販売を計画しているそうです。

 

2件目は、オーラルケアや日用品を製造しているサンスターからのプレスリリースです。化粧品の開発において、化学物質が皮膚に接した場合に皮膚アレルギーを誘発するリスク、皮膚感作性は重要であり、従来は動物実験によって評価されてきました。一方で、動物実験の禁止が進んでおり、動物を使用しない皮膚感作性評価法の開発が強く求められています。そこでサンスターでは皮膚感作性リスク評価を実施可能なAIを構築し、その予測精度を検証しました。

AIの構築と評価の流れのイメージ(出典:PRTIMES)

具体的には、動物実験で皮膚感作性の強さを示すEC3値が判明している195の物質を学習用、内部検証用、外部検証用の三つに振り分け、AIを構築しました。AIは皮膚感作性の有無にかかわらず予測可能な機械学習モデルAに加え、皮膚感作性のある物質に対して、特に予測精度の高いモデルBの2種類を組み合わせました。入力データは細胞実験の結果や分子構造に加えて、類似物質に関する数値も使用しました。類似物質に関する数値とは、対象物質に似ている物質のEC3値や、似ている度合いなどを示します。

「類似物質に関する数値」のイメージ(出典:PRTIMES)

結果、予測精度の指標であるR2値として(1)学習用物質で0.995、(2)内部検証用物質で0.787、(3)外部検証用物質で0.824であり、良好な予測精度を示しました。

AIの予測精度の評価(出典:PRTIMES)

このAIの活用により、アレルギー誘発リスクの低い安全な処方設計への貢献が期待でき、今後は本AIの実用化に向けて、適用範囲の明確化や他データでの充分な検証を実施する予定だそうです。この研究成果は「第50回日本毒性学会学術年会」(2023年6月19日(月)~6月21日(水))にて発表されました。

 

3件目は、化学分野・化学工学分野を専門としたデータサイエンス事業を展開しているデータケミカル株式会社のプレスリリースについてです。データケミカルでは、化学分野のAI・機械学習クラウドサービス「Datachemical LAB(データケミカルラボ)」を展開しており、このサービスでは実験条件の統計的な選定からアシストされ、得られたデータに基づいて20種類以上のアルゴリズムを自動的に最適化され、少ない実験回数で高い予測精度を実現することができます。

今回、予測モデルにおいてどの変数がより予測に影響を与えているかを測る“変数重要度計算”を行う新機能が追加されました。この新機能では、CVPFI(Cross-Validated Permutation Feature Importance)と呼ばれる独自のアルゴリズムを使用していて、従来の変数重要度の計算手法が抱えていた、特定の機械学習モデルしか対応できない、データが少ないときなどでは安定的に計算できない等の課題を改善し、汎用的に計算することができます。

予測モデル構築時にCVPFIにチェックすると、各変数の重要度が出力される(出典:PRTIMES

新機能により予測モデルの解釈性が大幅に向上し、様々な技術テーマの研究開発に機械学習をより活用しやすくなるそうです。

 

1件目のAIによるプラントの運転について、運転効率が人間を上回ったということで、将棋におけるAIの進化と重なる部分があると思いました。ただしプラントの運転をAIが行うことにより、バルブなどの動かし方の傾向が人間と変わることで、部品の劣化度合いなどが変わるのかが気になるところです。長期的な運用によって、運転効率だけでなくプラントのメンテナンスなどについても評価が行われることを期待します。2件目の皮膚感作性の予測は、動物の犠牲をできるだけ減らしながらも新しい製品の開発が続けることができる方法ではないでしょうか。AIがはじき出す予測値の活用については、規格や規制を管理している業界団体や国際機関で活発に議論を行ってほしいと思います。3件目の変数重要度計算は、得られた予測モデルの解釈を行う際に役立つのではないかと思います。モデルの精度はもちろん重要ですが、どの変数が重要なのかを知ることは科学現象の理解には必要なことだと思います。

関連書籍

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ガ求愛行動:性フェロモンを解明 東大など
  2. 日本化学会:次期会長に藤嶋昭氏を選出--初の直接選挙で
  3. 発展が続く触媒研究~京大より触媒研究の成果が相次いで発表される~…
  4. 春の褒章2010-林民生教授紫綬褒章
  5. CTCLS、製薬業界向けに医薬品の探索研究に特化した電子実験ノー…
  6. 数々の日本企業がIntel 2023 EPIC Supplier…
  7. 堀場氏、分析化学の”殿堂”入り
  8. 抗がん剤などの原料の新製造法

注目情報

ピックアップ記事

  1. リアルタイムで分子の自己組織化を観察・操作することに成功
  2. ポルフィリン中心金属の違いが薄膜構造を変える~配位結合を利用した新たな分子配向制御法の開発~
  3. 特許資産規模ランキング2019、トップ3は富士フイルム、三菱ケミカル、住友化学
  4. ナイトレン
  5. 大学院生のつぶやき:第5回HOPEミーティングに参加してきました
  6. 創薬における中分子
  7. MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」
  8. 千田憲孝 Noritaka Chida
  9. Twitter発!「笑える(?)実験大失敗集」
  10. 新型卓上NMR Spinsolve 90 が販売開始

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP