[スポンサーリンク]

元素

ネオン Neon -街を彩るネオンサイン

[スポンサーリンク]

 ネオンは、今は少なくなった街を彩るネオンサインのもととして有名。意外に思われるかもしれませんが、実はネオン自体は無色で、非常に安定な気体なのです。

 

ネオンの基本物性データ

分類 貴ガス(希ガス)
原子番号・原子量 10 (20.1797)
電子配置 2s22p6
密度 0.8999kg/m3
融点  –248.67℃
沸点 –246.05℃
硬度
色・形状 無色・気体
存在度 地球—、宇宙 3.44 x 106
クラーク数  5 x 10-7
発見者  ウィリアム・ラムゼー、モリス・トラバース(1898年)
主な同位体 20Ne (90.48%), 21Ne(0.27%), 22Ne(9.25%)
用途例 ネオンサイン、レーザー光の原料
前後の元素 フッ素ネオンナトリウム

新しい貴ガス元素

ネオンはイギリスの化学者ラムゼートラバースらにより、1898年に発見されました。ネオンという名前は、ギリシャ語の「新しい」を意味するneosに由来しています。

それまで貴ガスとして、ヘリウムと、ラムゼーとレイリーによって発見されたアルゴンは知られていました。しかし、メンデレーエフの提唱した周期表によると、その間に未知の元素があるはずだったのです。それを発見したため「新しい」という意味の名前がつけられました。

ネオンはヘリウムやアルゴンと同様に、外側の電子軌道にすべての電子が詰まっているため、化学的に安定な元素であり、単原子分子として存在します。

 

ウィリアム・ラムゼー

William Ramsay

William Ramsay

1852-1916年。イギリスの化学者。ほとんどの貴ガス元素を発見した。ヘリウムはすでに発見されていたが、太陽のスペクトル線の中であり、地上ではラムゼーがウラン鉱に含まれる窒素の中に発見した。1904年、空気中の貴ガスの発見によりラバースとともにノーベル化学賞を発見した。

 

夜の街を彩るネオンサイン

250〜400Paのネオンを封入したガラス管の両端をつないで放電すると光る原理を利用したのが、ネオンサインです。フランスの科学者ジョルジュ・クロード(Georges Claude)によりつくられ、1900年代初頭のパリ万国博覧会で初めて公開されました。

日本では東京の日比谷公園で最初に点灯されました。最近ではLED(発光ダイオード)などほかの光源が主流ですが、いまでも夜の街を彩るために多く利用されています。

しかし、ネオンサインとはいいますが、ネオンを封入したネオン管は赤橙色で、表現できる色は赤系の色のみです。その他の色を表現するためには、ほかの物質を封入する必要があります。例えば、ヘリウムは黄色、アルゴンは赤色〜青色、水銀(Hg)は青緑色、窒素(N2)は黄色の色を発します。

 

封入する希ガス(ガス)によって色が異なる

封入する貴ガス(ガス)によって色が異なる

 

コラム:ネオンサインといえばグリコ?

ネオンサインと聞いて、皆さんは何を思い浮かべますか?筆者は大阪・道頓堀にあるグリコのネオンサインを思い浮かべます。

このネオンサインは、なんと戦前の1935年からあるそうで、改装をへた5代目グリコネオンサインは1998年に公開されました。大阪城や通天閣など大阪の街が描かれ、空の部分のネオンの色を替えることによって、昼、夕焼け、星空、そして朝と、2分7秒かけて変わっていきました。この空の部分には青色(アルゴンガス着色管)、赤色(ネオンガス)、黄色(アルゴンガス蛍光管)が使われており、これらを組み合わせることによって色を変化させていたそうです。

 

この「5代目」も現在では公開終了、改装され2014年より6代目グリコサインが表示されています。そして残念ながら6台目はLEDとなってしまいました。時代の変化と技術の革新を感じます。

 

 

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. ベリリウム Beryllium -エメラルドの成分、宇宙望遠鏡に…
  2. 周期表を超えて~超原子の合成~
  3. ホウ素 Boron -ホウ酸だんごから耐火ガラスまで
  4. 化学かるた:元素編ー世界化学年をちなみ
  5. ペッカ・ピューッコ Pekka Pyykkö
  6. ランタノイド Lanthanoid
  7. カリウム Potassium 細胞内に多量に含まれる元素
  8. ヘリウム新供給プロジェクト、米エアプロダクツ&ケミカルズ社

注目情報

ピックアップ記事

  1. 化学系学生のための企業合同説明会
  2. 日本薬学会第145年会 に参加しよう!
  3. インドの農薬市場と各社の事業戦略について調査結果を発表
  4. アキラル色素分子にキラル光学特性を付与するミセルを開発
  5. 私がケムステスタッフになったワケ(2)
  6. ノーベル化学賞解説 on Twitter
  7. 第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授
  8. ベンゾ[1,2-b:4,5-b’]ジチオフェン:Benzo[1,2-b:4,5-b’]dithiophene
  9. 銀の殺菌効果がない?銀耐性を獲得するバシラス属菌
  10. アカデミアケミストがパパ育休を取得しました!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP