[スポンサーリンク]

天然物

ジブロモインジゴ dibromoindigo

[スポンサーリンク]

GREEN02210.PNG

イボニシやサラレイシなど、アッキガイ科巻貝にある分泌腺から得られる淡黄色の液体を、布にひたし日光にさらすと得られる色素は、鮮やかな紫色をしており、古代から知られ珍重されてきました。この色素の実体は、構成元素に臭素を含んだジブロモインジゴ(6,6’-dibromoindigo)と呼ばれる有機化合物です。

貝染めの場合、自然にはジブロモインジゴがどう合成されるのかと言うと、貝をつぶしたときにパープラーゼ(purpurase)と呼ばれる酵素が化合物1を化合物2に変換、空気中の酸素分子が反応して化合物2が化合物3に変化、すると二量化して緑色の化合物4が生成、にさらすことで化合物5つまりジブロモインジゴができる、といった流れになっています。

GREEN0222.png

ジブロモインジゴ自体は化学合成[1],[2]も可能ですが、商業ベースではあまり耳にしません。おそらく、わざわざ貝紫を化学合成しなくてもアニリン化合物しかり優秀な染料は他にもありますし、本来の貝紫と違ってわずかな不純物による色彩の機微も表現できず、その上ラベルに合成品だと記載する義務がわずらわしいからでしょうか。

GREEN0223.png

タンパク質の立体構造データはProtein Data Bankより

なぜアッキガイのなかまはこのような臭素化合物を作っているのかというと、詳しくは分かっていません。しかし、最近になって報告[3]されたところによると、ジブロモインジゴ前駆体の派生化合物(6,6'-dibromoindirubin)には、GSK3(glycogen synthase kinase 3)タンパク質の機能を阻害する性質があるようです。しかも、数あるキナーゼの中でGSK3だけを選り好みして作用するようで、この臭素化合物は新薬のリード化合物として注目されることになりました。GSK3は研究史ゆえにグリコーゲン合成酵素と関係あるかのような命名ですが、それだけではなく動物細胞のウィント(Wnt)シグナル経路にあるタンパク質(β-catenin)をリン酸化して制御する役割も持ちます。そのため、新たな選択的阻害剤(6-bromoindirubin-3'-oxime)の開発は、遺伝子導入によらず細胞の分化能力を制御できるため、再生医療の分野にまで影響を与える魅力的な研究[4]でした。

アッキガイのなかまにしては、せっかく自分を食べる天敵の体調を悪くしてやろうとせっせと作っていたにも関わらず、人間に捕えられてミンチにされ天日に干されて、本来とは違う出来損ないを観賞用にと珍重されていたのですから、ちょっぴり可哀そうかもしれません。再スタートした高貴の紫は、果たして病める患者を救えるのか、役に立つときは近いかもしれません。

 

  • 参考文献

[1] ジブロモインジゴ化学合成の収率を改善

"An improved synthetic procedure for 6, 6'-dibromoindigo (Tyrian purple)" Peter Imming et al. Syn. Comm. 2001 DOI: 10.1081/SCC-100107023

[2] 生合成経路を参考にジブロモインジゴを化学合成

"A facile synthesis of Tyrian purple based on a biosynthetic pathway" Yasuhiro Tanoue et al. Fish. Sci. 2001 DOI: 10.1046/j.1444-2906.2001.00312.x

[3] ジブロモインジゴ関連化合物はGSK3の阻害剤になる

"GSK-3-Selective Inhibitors Derived from Tyrian Purple Indirubins" Laurent Meijer et al. Chem. Biol. 2003 DOI: 10.1016/j.chembiol.2003.11.010

[4] GSK3選択的阻害剤でWntシグナル経路を活性化しヒトおよびマウスの胚性幹細胞(ES細胞)の分化多能性を維持

"Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor" Noboru Sato et al. Nature Medicine 2004 DOI: 10.1038/nm979 

 

  • 関連書籍

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. グルコース (glucose)
  2. カリオフィレン /caryophyllene
  3. ブレビコミン /Brevicomin
  4. バニリン /Vanillin
  5. ノルゾアンタミン /Norzoanthamine
  6. アルファリポ酸 /α-lipoic acid
  7. ギンコライド ginkgolide
  8. メバスタチン /Mevastatin

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2018年4月号:脱カルボニル型カップリング反応・キレートアミン型イリジウム触媒・キラルリン酸・アリル銅中間体・窒素固定
  2. さあ分子模型を取り出して
  3. ペタシス・フェリエ転位 Petasis-Ferrier Rearrangement
  4. 摩訶不思議なルイス酸・トリス(ペンタフルオロフェニル)ボラン
  5. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」
  6. 黒田 一幸 Kazuyuki Kuroda
  7. Thomas R. Ward トーマス・ワード
  8. 蓄電池 Rechargeable Battery
  9. 電化で実現する脱炭素化ソリューション 〜蒸留・焼成・ケミカルリサイクル〜
  10. 光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年2月
 12345
6789101112
13141516171819
20212223242526
272829  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP