[スポンサーリンク]

ホスト分子

シアノスター Cyanostar

[スポンサーリンク]

シアノスター  (Cyanostar)[1]は、tert-butylbenzeneとacrylonitrileを構成単位とする環状分子である (図1)。

合成化学的に作られる大環状分子の一つである。2013年にAmar H. Floodらが合成した。合成でつくる環状分子の中では、比較的簡単かつ大量に合成できる (7 Step, 8.9 g, 52% total yield、下記参照)。環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の電子不足な空間である。すなわち、アニオンなどの電子豊富な化合物を捕捉できる。この性質を利用し、超分子合成に展開されている。

図1. シアノスターの構造と軸不斉

 

構造

tert-butylbenzeneの3,5位と、acrylonitrileの2,3位とが、それぞれ交互に縮合した骨格を構成単位とし、5単位が円状に連なった環状分子である。分子の構造が星型に見えること、この分子の性質を決定づける官能基がシアノ基であったことから、シアノスターと名付けられた。

分子中心に五回回転軸をもつ。その軸に沿った軸不斉をもち、縮合方向ならびに環の巻く方向によってP体とM体が存在する。

結晶中では1対のスタッキング構造(スタッキングダイマー)をとっている。P体とM体は、全体の存在比が1:1である。しかしながら、スタッキングダイマーはPMMPPPMMのように複雑なダイマー構造をとっており、その存在確率は完全に等価ではない。(Whole-Molecule Disorder解析によって明らかにしている。詳しくは論文参照。)

環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の大きさをもつ。超分子で用いられる環状分子と比較すると、α-シクロデキストリンと同じ程度の大きさである。

具体的な合成法

5-tert-butyl-isophthalicacidを還元してジオール化し、一方のヒドロキシル基をブロモ化、続いてシアノ化する。残りのヒドロキシル基をPCC酸化でアルデヒド化することでモノマーを得る (図2)。そのモノマーを、炭酸セシウム存在下でKnoevenagel縮合させて、シアノスターを得る。

全7段階を非常に簡単な反応でのみで合成でき、総収率は52%である。最大収量は8.9 gである。合成する環状分子の収率としては高い収率・収量である。

最終段階の環化収率が高い理由は、炭酸イオン(CO32-)のまわりに電子不足なモノマーが集り、それを鋳型として縮合反応が起きたからである。(テンプレート効果

図2. シアノスターの合成法

 

性質

環内孔は電子密度が低い。また、環内孔に向いた水素は、水素結合能が非常に高い。これらはシアノ基によって電子が引かれているためである。実際にNMRスペクトルを測定すると、環内孔のプロトンを低磁場領域に観測できる。シアノスターの構成単位のDFT計算と静電ポテンシャル計算によっても、この事実が支持されている。

図3. シアノスターとアニオン類の錯形成: (a) 模式図、(b) アニオンの大きさと会合定数の関係 (論文[1]より転載)

開発者のFloodらは、シアノスターと様々なアニオンとの相互作用を検討した。シアノスターとアニオンで1:1もしくは2:1の錯体を作ることを明らかにした。1:1錯体の会合定数はKa = 108-1012であった。環内孔とのサイズが最も適合するPF6とは特に強く相互作用した。すなわち、シアノスターは5Å程度のアニオンと最もよく相互作用できる環分子である。

 

参考文献

  1. Lee, A.; Chen, C. H.; Flood. A. H. Nature Chem. 2013, 5, 704-710, DOI:10.1038/nchem.166.

 

Avatar photo

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. エチルマレイミド (N-ethylmaleimide)
  2. ボルテゾミブ (bortezomib)
  3. 酒石酸/Tartaric acid
  4. 化学者のためのエレクトロニクス講座~無電解めっきの還元剤編~
  5. ミノキシジル /Minoxidil
  6. ククルビットウリル Cucurbituril
  7. サリチル酸 (salicylic acid)
  8. 化学者のためのエレクトロニクス講座~無電解卑金属めっきの各論編~…

注目情報

ピックアップ記事

  1. 健康的なPC作業環境のすすめ
  2. 質量分析で使うRMS errorって?
  3. 典型元素を超活用!不飽和化合物の水素化/脱水素化を駆使した水素精製
  4. 2009年度日本学士院賞、化学では竜田教授が受賞
  5. 稀少な金属種を使わない高効率金属錯体CO2還元光触媒
  6. 第19回 有機エレクトロニクスを指向した合成 – Glen Miller
  7. 「溶融炭酸塩基の脱プロトン化で有用物質をつくる」スタンフォード大学・Kanan研より
  8. 高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用
  9. iPadで使えるChemDrawが発売開始
  10. トリフルオロ酢酸パラジウム(II) : Palladium(II) Trifluoroacetate

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP