[スポンサーリンク]

ホスト分子

シアノスター Cyanostar

シアノスター  (Cyanostar)[1]は、tert-butylbenzeneとacrylonitrileを構成単位とする環状分子である (図1)。

合成化学的に作られる大環状分子の一つである。2013年にAmar H. Floodらが合成した。合成でつくる環状分子の中では、比較的簡単かつ大量に合成できる (7 Step, 8.9 g, 52% total yield、下記参照)。環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の電子不足な空間である。すなわち、アニオンなどの電子豊富な化合物を捕捉できる。この性質を利用し、超分子合成に展開されている。

図1. シアノスターの構造と軸不斉

 

構造

tert-butylbenzeneの3,5位と、acrylonitrileの2,3位とが、それぞれ交互に縮合した骨格を構成単位とし、5単位が円状に連なった環状分子である。分子の構造が星型に見えること、この分子の性質を決定づける官能基がシアノ基であったことから、シアノスターと名付けられた。

分子中心に五回回転軸をもつ。その軸に沿った軸不斉をもち、縮合方向ならびに環の巻く方向によってP体とM体が存在する。

結晶中では1対のスタッキング構造(スタッキングダイマー)をとっている。P体とM体は、全体の存在比が1:1である。しかしながら、スタッキングダイマーはPMMPPPMMのように複雑なダイマー構造をとっており、その存在確率は完全に等価ではない。(Whole-Molecule Disorder解析によって明らかにしている。詳しくは論文参照。)

環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の大きさをもつ。超分子で用いられる環状分子と比較すると、α-シクロデキストリンと同じ程度の大きさである。

具体的な合成法

5-tert-butyl-isophthalicacidを還元してジオール化し、一方のヒドロキシル基をブロモ化、続いてシアノ化する。残りのヒドロキシル基をPCC酸化でアルデヒド化することでモノマーを得る (図2)。そのモノマーを、炭酸セシウム存在下でKnoevenagel縮合させて、シアノスターを得る。

全7段階を非常に簡単な反応でのみで合成でき、総収率は52%である。最大収量は8.9 gである。合成する環状分子の収率としては高い収率・収量である。

最終段階の環化収率が高い理由は、炭酸イオン(CO32-)のまわりに電子不足なモノマーが集り、それを鋳型として縮合反応が起きたからである。(テンプレート効果

図2. シアノスターの合成法

 

性質

環内孔は電子密度が低い。また、環内孔に向いた水素は、水素結合能が非常に高い。これらはシアノ基によって電子が引かれているためである。実際にNMRスペクトルを測定すると、環内孔のプロトンを低磁場領域に観測できる。シアノスターの構成単位のDFT計算と静電ポテンシャル計算によっても、この事実が支持されている。

図3. シアノスターとアニオン類の錯形成: (a) 模式図、(b) アニオンの大きさと会合定数の関係 (論文[1]より転載)

開発者のFloodらは、シアノスターと様々なアニオンとの相互作用を検討した。シアノスターとアニオンで1:1もしくは2:1の錯体を作ることを明らかにした。1:1錯体の会合定数はKa = 108-1012であった。環内孔とのサイズが最も適合するPF6とは特に強く相互作用した。すなわち、シアノスターは5Å程度のアニオンと最もよく相互作用できる環分子である。

 

参考文献

  1. Lee, A.; Chen, C. H.; Flood. A. H. Nature Chem. 2013, 5, 704-710, DOI:10.1038/nchem.166.

 

The following two tabs change content below.
Trogery12

Trogery12

博士(工学)。ポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. カイニン酸 kainic acid
  2. フタロシアニン phthalocyanine
  3. バトラコトキシン (batrachotoxin)
  4. ジンクピリチオン (zinc pyrithione)
  5. シラフルオフェン (silafluofen)
  6. アデノシン /adenosine
  7. グリチルリチン酸 (glycyrrhizic acid)
  8. パクリタキセル(タキソール) paclitaxel(TAXOL)…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高脂血症薬がウイルス抑制/C型肝炎で厚労省研究班
  2. 「2010年トップ3を目指す」万有製薬平手社長
  3. 東京理科大学みらい研究室にお邪魔してきました
  4. 中学入試における化学を調べてみた
  5. 2009年ノーベル化学賞は誰の手に?
  6. 塩野義製薬、抗インフル治療薬を年内に申請
  7. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編)
  8. 細胞の中を旅する小分子|第三回(最終回)
  9. 実例で分かるスケールアップの原理と晶析【終了】
  10. シリリウムカルボラン触媒を用いる脱フッ素水素化

関連商品

注目情報

注目情報

最新記事

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

PAGE TOP