[スポンサーリンク]

ホスト分子

シアノスター Cyanostar

[スポンサーリンク]

シアノスター  (Cyanostar)[1]は、tert-butylbenzeneとacrylonitrileを構成単位とする環状分子である (図1)。

合成化学的に作られる大環状分子の一つである。2013年にAmar H. Floodらが合成した。合成でつくる環状分子の中では、比較的簡単かつ大量に合成できる (7 Step, 8.9 g, 52% total yield、下記参照)。環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の電子不足な空間である。すなわち、アニオンなどの電子豊富な化合物を捕捉できる。この性質を利用し、超分子合成に展開されている。

図1. シアノスターの構造と軸不斉

 

構造

tert-butylbenzeneの3,5位と、acrylonitrileの2,3位とが、それぞれ交互に縮合した骨格を構成単位とし、5単位が円状に連なった環状分子である。分子の構造が星型に見えること、この分子の性質を決定づける官能基がシアノ基であったことから、シアノスターと名付けられた。

分子中心に五回回転軸をもつ。その軸に沿った軸不斉をもち、縮合方向ならびに環の巻く方向によってP体とM体が存在する。

結晶中では1対のスタッキング構造(スタッキングダイマー)をとっている。P体とM体は、全体の存在比が1:1である。しかしながら、スタッキングダイマーはPMMPPPMMのように複雑なダイマー構造をとっており、その存在確率は完全に等価ではない。(Whole-Molecule Disorder解析によって明らかにしている。詳しくは論文参照。)

環内孔は4.5 (モノマー)−5.2 (スタッキングダイマー) Å程度の大きさをもつ。超分子で用いられる環状分子と比較すると、α-シクロデキストリンと同じ程度の大きさである。

具体的な合成法

5-tert-butyl-isophthalicacidを還元してジオール化し、一方のヒドロキシル基をブロモ化、続いてシアノ化する。残りのヒドロキシル基をPCC酸化でアルデヒド化することでモノマーを得る (図2)。そのモノマーを、炭酸セシウム存在下でKnoevenagel縮合させて、シアノスターを得る。

全7段階を非常に簡単な反応でのみで合成でき、総収率は52%である。最大収量は8.9 gである。合成する環状分子の収率としては高い収率・収量である。

最終段階の環化収率が高い理由は、炭酸イオン(CO32-)のまわりに電子不足なモノマーが集り、それを鋳型として縮合反応が起きたからである。(テンプレート効果

図2. シアノスターの合成法

 

性質

環内孔は電子密度が低い。また、環内孔に向いた水素は、水素結合能が非常に高い。これらはシアノ基によって電子が引かれているためである。実際にNMRスペクトルを測定すると、環内孔のプロトンを低磁場領域に観測できる。シアノスターの構成単位のDFT計算と静電ポテンシャル計算によっても、この事実が支持されている。

図3. シアノスターとアニオン類の錯形成: (a) 模式図、(b) アニオンの大きさと会合定数の関係 (論文[1]より転載)

開発者のFloodらは、シアノスターと様々なアニオンとの相互作用を検討した。シアノスターとアニオンで1:1もしくは2:1の錯体を作ることを明らかにした。1:1錯体の会合定数はKa = 108-1012であった。環内孔とのサイズが最も適合するPF6とは特に強く相互作用した。すなわち、シアノスターは5Å程度のアニオンと最もよく相互作用できる環分子である。

 

参考文献

  1. Lee, A.; Chen, C. H.; Flood. A. H. Nature Chem. 2013, 5, 704-710, DOI:10.1038/nchem.166.

 

Avatar photo

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. ヘロナミドA Heronamide A
  2. シラン Silane
  3. 尿酸 Uric Acid 〜痛風リスクと抗酸化作用のジレンマ〜
  4. アスパラプチン Asparaptine
  5. ポリアクリル酸ナトリウム Sodium polyacrylate…
  6. ペルフルオロデカリン (perfluorodecalin)
  7. ギンコライド ginkgolide
  8. フルオキセチン(プロザック) / Fluoxetine (Pro…

注目情報

ピックアップ記事

  1. 活性酸素・フリーラジカルの科学: 計測技術の新展開と広がる応用
  2. こんなのアリ!?ギ酸でヒドロカルボキシル化
  3. 遠藤守信 Morinobu Endo
  4. フェリエ転位 Ferrier Rearrangement
  5. スルホニル保護基 Sulfonyl Protective Group
  6. クレブス回路代謝物と水素でエネルギー炭素資源を創出
  7. 『分子標的』に期待
  8. 【ケムステSlackに訊いてみた①】有機合成を学ぶオススメ参考書を教えて!
  9. 計算化学:DFT計算って何?Part II
  10. 変異体鏡像Rasタンパクの化学全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP