[スポンサーリンク]

F

フェルキン・アーン モデル Felkin-Anh Model

[スポンサーリンク]

 

概要

α位に不斉中心を持つようなカルボニル化合物への求核付加では、立体選択性が発現する。これをよく説明するモデルとして受け入れられているのがFelkin-Anhモデルである。

それ以前に受け入れられていたCram則と異なり、立体電子効果を取り入れている点が特徴である。このためより多くの基質に対して適用がある。

 

基本文献

  • Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. doi:10.1016/S0040-4039(00)89719-1
  • Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 19771, 61.
  • Anh, N. T.; Eisenstein, O.; Lefour, J-M.; Dau, M-E. J. Am. Chem. Soc. 1973, 95, 6146. DOI: 10.1021/ja00799a068
  • Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 197617, 155. doi:10.1016/0040-4039(76)80002-0
  • Anh, N. T. Top. Curr. Chem. 1980, 88, 146.
  • Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191. doi: 10.1021/cr980379w

 

モデルの解説

カルボニルα位に三種類の置換基(RL>RM>RS)をもつ基質を想定する。

・ケトン(R≠H)の場合

① まずは基質の最安定配座を考える。RLがカルボニル平面に対して90°の二面角を向いた配座がそれであり、求核剤はRLと反対の方向から反応する。また、もうひとつの置換基Rとの立体反発を避けるため、RMがカルボニル基のゴーシュに位置する配座がより優勢となる。

feklin_anh_2
② 次に反応遷移状態を考える。立体電子効果、すなわちsp2→sp3への軌道遷移を考慮に入れ、Burgi-Dunitz角(カルボニルC=Oから約100°の方向)で求核剤が近づくモデルをここでは考える。この際、最も大きな置換基RLは求核剤との立体反発を避けるべく接近方向の対極(約180°)を向くように若干配座が修正される。こういったモデルにより、立体選択性はうまく説明される。

feklin_anh_3

・アルデヒド(R=H)の場合

水素は立体要請が小さいために、ケトンの場合と異なり、①の配座安定性においてそれほどのエネルギー差が生じない。しかし求核剤が接近するときの、近傍の置換基RMもしくはRSとの立体反発由来のエネルギー差が生じてくる。このため、結果的にケトンの場合と同様の立体選択性にて目的物が得られることになる。

feklin_anh_5

・α位置換基の一つが(キレート能のない)電気陰性基の場合

この場合には軌道相互作用を最大限に考えるべく、電気陰性基Xとα位炭素のσ*軌道と、カルボニルのπ*軌道が最大限重なりあうような配座から反応が進行する。すなわちXがカルボニル平面に対して二面角90°の配座を取り、その状態からRLとの立体反発を避けるように求核剤が近づく。この遷移状態ではC-Xσ*軌道との超共役効果により、電子密度の高まったπ*軌道が安定化される。

feklin_anh_4.gif

・α位置換基の一つが配位性官能基で、かつキレート可能な金属が介在している場合

この特別な場合については、キレーションモデル(Chelation Model)という名称が付けられている。Felkin-Anhモデルとは立体選択性が逆になるよう解釈される。すなわち、金属が配位性官能基Dおよびカルボニル酸素とキレートした配座が優先となり、RLとの立体反発を避けるように求核剤が近づく。

feklin_anh_6.gif

関連書籍

[amazonjs asin=”4759808191″ locale=”JP” title=”立体電子効果―三次元の有機電子論”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. (古典的)アルドール反応 (Classical) Aldol R…
  2. ソープ・チーグラー反応 Thorpe-Ziegler React…
  3. ボロン酸の保護基 Protecting Groups for B…
  4. [2+2]光環化反応 [2+2] Photocyclizatio…
  5. フィッツィンガー キノリン合成 Pfitzinger Quino…
  6. ヒュスゲン環化付加 Huisgen Cycloaddition
  7. 武田オレフィン合成 Takeda Olefination
  8. ショッテン・バウマン反応 Schotten-Baumann Re…

注目情報

ピックアップ記事

  1. ターボグリニャール試薬 Turbo Grignard Reagent
  2. カーボンナノチューブ /carbon nanotube (CNT)
  3. ホーナー・ワズワース・エモンス反応 Horner-Wadsworth-Emmons (HWE) Reaction
  4. 櫻井英樹 Hideki Sakurai
  5. 化学コミュニケーション賞2024、候補者募集中!
  6. メーヤワイン試薬 Meerwein Reagent
  7. 窒素固定をめぐって-1
  8. 逆生合成理論解析という手法を開発し、テルペン系類縁天然物 peniroquesine の難解な生合成機構の解明に成功
  9. 化学反応を起こせる?インタラクティブな元素周期表
  10. 世界の中分子医薬品市場について調査結果を発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP