[スポンサーリンク]

F

フェルキン・アーン モデル Felkin-Anh Model

[スポンサーリンク]

 

概要

α位に不斉中心を持つようなカルボニル化合物への求核付加では、立体選択性が発現する。これをよく説明するモデルとして受け入れられているのがFelkin-Anhモデルである。

それ以前に受け入れられていたCram則と異なり、立体電子効果を取り入れている点が特徴である。このためより多くの基質に対して適用がある。

 

基本文献

  • Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. doi:10.1016/S0040-4039(00)89719-1
  • Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 19771, 61.
  • Anh, N. T.; Eisenstein, O.; Lefour, J-M.; Dau, M-E. J. Am. Chem. Soc. 1973, 95, 6146. DOI: 10.1021/ja00799a068
  • Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 197617, 155. doi:10.1016/0040-4039(76)80002-0
  • Anh, N. T. Top. Curr. Chem. 1980, 88, 146.
  • Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191. doi: 10.1021/cr980379w

 

モデルの解説

カルボニルα位に三種類の置換基(RL>RM>RS)をもつ基質を想定する。

・ケトン(R≠H)の場合

① まずは基質の最安定配座を考える。RLがカルボニル平面に対して90°の二面角を向いた配座がそれであり、求核剤はRLと反対の方向から反応する。また、もうひとつの置換基Rとの立体反発を避けるため、RMがカルボニル基のゴーシュに位置する配座がより優勢となる。

feklin_anh_2
② 次に反応遷移状態を考える。立体電子効果、すなわちsp2→sp3への軌道遷移を考慮に入れ、Burgi-Dunitz角(カルボニルC=Oから約100°の方向)で求核剤が近づくモデルをここでは考える。この際、最も大きな置換基RLは求核剤との立体反発を避けるべく接近方向の対極(約180°)を向くように若干配座が修正される。こういったモデルにより、立体選択性はうまく説明される。

feklin_anh_3

・アルデヒド(R=H)の場合

水素は立体要請が小さいために、ケトンの場合と異なり、①の配座安定性においてそれほどのエネルギー差が生じない。しかし求核剤が接近するときの、近傍の置換基RMもしくはRSとの立体反発由来のエネルギー差が生じてくる。このため、結果的にケトンの場合と同様の立体選択性にて目的物が得られることになる。

feklin_anh_5

・α位置換基の一つが(キレート能のない)電気陰性基の場合

この場合には軌道相互作用を最大限に考えるべく、電気陰性基Xとα位炭素のσ*軌道と、カルボニルのπ*軌道が最大限重なりあうような配座から反応が進行する。すなわちXがカルボニル平面に対して二面角90°の配座を取り、その状態からRLとの立体反発を避けるように求核剤が近づく。この遷移状態ではC-Xσ*軌道との超共役効果により、電子密度の高まったπ*軌道が安定化される。

feklin_anh_4.gif

・α位置換基の一つが配位性官能基で、かつキレート可能な金属が介在している場合

この特別な場合については、キレーションモデル(Chelation Model)という名称が付けられている。Felkin-Anhモデルとは立体選択性が逆になるよう解釈される。すなわち、金属が配位性官能基Dおよびカルボニル酸素とキレートした配座が優先となり、RLとの立体反発を避けるように求核剤が近づく。

feklin_anh_6.gif

関連書籍

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. リンドラー還元 Lindlar Reduction
  2. ロッセン転位 Lossen Rearrangement
  3. IBX酸化 IBX Oxidation
  4. 脱酸素的フッ素化 Deoxofluorination
  5. ブレイズ反応 Blaise Reaction
  6. メーヤワイン試薬 Meerwein Reagent
  7. ベンザイン Benzyne
  8. ワートン反応 Wharton Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. テトラキス(トリフェニルホスフィン)パラジウム(0) : Tetrakis(triphenylphosphine)palladium(0)
  2. ベンザイン Benzyne
  3. MOFはイオンのふるい~リチウム-硫黄電池への応用事例~
  4. 【読者特典】第92回日本化学会付設展示会を楽しもう!PartII
  5. デンドリマー / dendrimer
  6. 2016年8月の注目化学書籍
  7. (+)-11,11′-Dideoxyverticillin Aの全合成
  8. 浄水場から検出されたホルムアルデヒドの原因物質を特定
  9. シーユアン・リュー Shih-Yuan Liu
  10. 含ケイ素四員環-その2-

関連商品

注目情報

注目情報

最新記事

天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–

ケムステ海外研究記の第 33 回はテキサス大学 Liu 研究室に留学されていた牛丸理一郎先生にお願い…

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

コロナウイルスが免疫システムから逃れる方法(1)

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖…

Chem-Station Twitter

PAGE TOP