[スポンサーリンク]

F

フェルキン・アーン モデル Felkin-Anh Model

[スポンサーリンク]

 

概要

α位に不斉中心を持つようなカルボニル化合物への求核付加では、立体選択性が発現する。これをよく説明するモデルとして受け入れられているのがFelkin-Anhモデルである。

それ以前に受け入れられていたCram則と異なり、立体電子効果を取り入れている点が特徴である。このためより多くの基質に対して適用がある。

 

基本文献

  • Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. doi:10.1016/S0040-4039(00)89719-1
  • Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 19771, 61.
  • Anh, N. T.; Eisenstein, O.; Lefour, J-M.; Dau, M-E. J. Am. Chem. Soc. 1973, 95, 6146. DOI: 10.1021/ja00799a068
  • Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 197617, 155. doi:10.1016/0040-4039(76)80002-0
  • Anh, N. T. Top. Curr. Chem. 1980, 88, 146.
  • Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191. doi: 10.1021/cr980379w

 

モデルの解説

カルボニルα位に三種類の置換基(RL>RM>RS)をもつ基質を想定する。

・ケトン(R≠H)の場合

① まずは基質の最安定配座を考える。RLがカルボニル平面に対して90°の二面角を向いた配座がそれであり、求核剤はRLと反対の方向から反応する。また、もうひとつの置換基Rとの立体反発を避けるため、RMがカルボニル基のゴーシュに位置する配座がより優勢となる。

feklin_anh_2
② 次に反応遷移状態を考える。立体電子効果、すなわちsp2→sp3への軌道遷移を考慮に入れ、Burgi-Dunitz角(カルボニルC=Oから約100°の方向)で求核剤が近づくモデルをここでは考える。この際、最も大きな置換基RLは求核剤との立体反発を避けるべく接近方向の対極(約180°)を向くように若干配座が修正される。こういったモデルにより、立体選択性はうまく説明される。

feklin_anh_3

・アルデヒド(R=H)の場合

水素は立体要請が小さいために、ケトンの場合と異なり、①の配座安定性においてそれほどのエネルギー差が生じない。しかし求核剤が接近するときの、近傍の置換基RMもしくはRSとの立体反発由来のエネルギー差が生じてくる。このため、結果的にケトンの場合と同様の立体選択性にて目的物が得られることになる。

feklin_anh_5

・α位置換基の一つが(キレート能のない)電気陰性基の場合

この場合には軌道相互作用を最大限に考えるべく、電気陰性基Xとα位炭素のσ*軌道と、カルボニルのπ*軌道が最大限重なりあうような配座から反応が進行する。すなわちXがカルボニル平面に対して二面角90°の配座を取り、その状態からRLとの立体反発を避けるように求核剤が近づく。この遷移状態ではC-Xσ*軌道との超共役効果により、電子密度の高まったπ*軌道が安定化される。

feklin_anh_4.gif

・α位置換基の一つが配位性官能基で、かつキレート可能な金属が介在している場合

この特別な場合については、キレーションモデル(Chelation Model)という名称が付けられている。Felkin-Anhモデルとは立体選択性が逆になるよう解釈される。すなわち、金属が配位性官能基Dおよびカルボニル酸素とキレートした配座が優先となり、RLとの立体反発を避けるように求核剤が近づく。

feklin_anh_6.gif

関連書籍

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ウィルゲロット反応 Willgerodt Reaction
  2. マイヤース 不斉アルキル化 Myers Asymmetric A…
  3. 秋山・寺田触媒 Akiyama-Terada Catalyst
  4. ピナコール転位 Pinacol Rearrangement
  5. ベシャンプ還元 Bechamp Reduction
  6. バイヤー・ビリガー酸化 Baeyer-Villiger Oxid…
  7. 四酸化ルテニウム Ruthenium Tetroxide (Ru…
  8. ピクテ・スペングラー反応 Pictet-Spengler Rea…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. “Wakati Project” 低コストで農作物を保存する技術とは
  2. 日本化学会ケムステイブニングミキサーへのお誘い
  3. p-メトキシベンジル保護基 p-Methoxybenzyl (PMB) Protective Group
  4. 超小型シリンジ開発 盛岡の企業
  5. 学部4年間の教育を振り返る
  6. 結晶構造に基づいた酵素機能の解明ーロバスタチン生合成に関わる還元酵素LovCー
  7. 「進化分子工学によってウイルス起源を再現する」ETH Zurichより
  8. 製薬各社の被災状況②
  9. 相間移動触媒 Phase-Transfer Catalyst (PTC)
  10. ローランド・フィッシャー Roland A. Fischer

関連商品

注目情報

注目情報

最新記事

C–NおよびC–O求電子剤間の還元的クロスカップリング

C–N求電子剤とC–O求電子剤間のクロスカップリング反応が初めて開発された。有機化合物中に普遍的に存…

Principles and Applications of Aggregation-Induced Emission

内容This book explores the aggregation-induced e…

セルロースナノファイバーの真価

お申込み・詳細はこちら開講期間2019年12月11日(水)10:00~17:25 <1日のみ…

「日産化学」ってどんな会社?

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギルオキシム・塩メタセシス反応・架橋型人工核酸・環状ポリアリレン・1,3-双極子付加環化反応

有機合成化学協会が発行する有機合成化学協会誌、2019年10月号がオンライン公開されました。…

有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リケラボコラボレーション)

以前お知らせしたとおり理系の理想の働き方を考える研究所「リケラボ」とコラボレーションして、特集記事を…

Chem-Station Twitter

PAGE TOP