[スポンサーリンク]

F

フェルキン・アーン モデル Felkin-Anh Model

[スポンサーリンク]

 

概要

α位に不斉中心を持つようなカルボニル化合物への求核付加では、立体選択性が発現する。これをよく説明するモデルとして受け入れられているのがFelkin-Anhモデルである。

それ以前に受け入れられていたCram則と異なり、立体電子効果を取り入れている点が特徴である。このためより多くの基質に対して適用がある。

 

基本文献

  • Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. doi:10.1016/S0040-4039(00)89719-1
  • Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 19771, 61.
  • Anh, N. T.; Eisenstein, O.; Lefour, J-M.; Dau, M-E. J. Am. Chem. Soc. 1973, 95, 6146. DOI: 10.1021/ja00799a068
  • Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 197617, 155. doi:10.1016/0040-4039(76)80002-0
  • Anh, N. T. Top. Curr. Chem. 1980, 88, 146.
  • Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191. doi: 10.1021/cr980379w

 

モデルの解説

カルボニルα位に三種類の置換基(RL>RM>RS)をもつ基質を想定する。

・ケトン(R≠H)の場合

① まずは基質の最安定配座を考える。RLがカルボニル平面に対して90°の二面角を向いた配座がそれであり、求核剤はRLと反対の方向から反応する。また、もうひとつの置換基Rとの立体反発を避けるため、RMがカルボニル基のゴーシュに位置する配座がより優勢となる。

feklin_anh_2
② 次に反応遷移状態を考える。立体電子効果、すなわちsp2→sp3への軌道遷移を考慮に入れ、Burgi-Dunitz角(カルボニルC=Oから約100°の方向)で求核剤が近づくモデルをここでは考える。この際、最も大きな置換基RLは求核剤との立体反発を避けるべく接近方向の対極(約180°)を向くように若干配座が修正される。こういったモデルにより、立体選択性はうまく説明される。

feklin_anh_3

・アルデヒド(R=H)の場合

水素は立体要請が小さいために、ケトンの場合と異なり、①の配座安定性においてそれほどのエネルギー差が生じない。しかし求核剤が接近するときの、近傍の置換基RMもしくはRSとの立体反発由来のエネルギー差が生じてくる。このため、結果的にケトンの場合と同様の立体選択性にて目的物が得られることになる。

feklin_anh_5

・α位置換基の一つが(キレート能のない)電気陰性基の場合

この場合には軌道相互作用を最大限に考えるべく、電気陰性基Xとα位炭素のσ*軌道と、カルボニルのπ*軌道が最大限重なりあうような配座から反応が進行する。すなわちXがカルボニル平面に対して二面角90°の配座を取り、その状態からRLとの立体反発を避けるように求核剤が近づく。この遷移状態ではC-Xσ*軌道との超共役効果により、電子密度の高まったπ*軌道が安定化される。

feklin_anh_4.gif

・α位置換基の一つが配位性官能基で、かつキレート可能な金属が介在している場合

この特別な場合については、キレーションモデル(Chelation Model)という名称が付けられている。Felkin-Anhモデルとは立体選択性が逆になるよう解釈される。すなわち、金属が配位性官能基Dおよびカルボニル酸素とキレートした配座が優先となり、RLとの立体反発を避けるように求核剤が近づく。

feklin_anh_6.gif

関連書籍

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ヒドロシリル化反応 Hydrosilylation
  2. ビギネリ反応 Biginelli Reaction
  3. 永田試薬 Nagata Reagent
  4. ハロホルム反応 Haloform Reaction
  5. 向山水和反応 Mukaiyama Hydration
  6. ハンチュ エステルを用いる水素移動還元 Transfer Hyd…
  7. 四酸化ルテニウム Ruthenium Tetroxide (Ru…
  8. アルキンメタセシス Alkyne Metathesis

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ご注文は海外大学院ですか?〜出願編〜
  2. 一流の化学雑誌をいかにしてつくるか?
  3. ケムステ海外研究記 まとめ【地域別/目的別】
  4. アメリカで Ph.D. を取る -Visiting Weekend 参加報告 (後編)-
  5. 安藤弘宗 Hiromune Ando
  6. シラン Silane
  7. 超高速レーザー分光を用いた有機EL発光材料の分子構造変化の実測
  8. 有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香族ポリケチド天然物・りん光性デンドリマー・キャビタンド・金属カルベノイド・水素化ジイソブチルアルミニウム
  9. 旭化成の吉野彰氏 リチウムイオン電池技術の発明・改良で 2019 年欧州発明家賞を受賞
  10. Post-Itのはなし ~吸盤ではない 2~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年8月
« 7月   9月 »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP