[スポンサーリンク]

odos 有機反応データベース

歪み促進逆電子要請型Diels-Alder反応 SPIEDAC reaction

[スポンサーリンク]

概要

テトラジンやトリアジンなどの極めて電子不足な複素環は、ノルボルネン・trans-シクロオクテン・シクロオクチンといった歪C-C多重結合化合物に対して高い反応性を示す。

この歪み促進逆電子要請型Diels-Alder反応(Strain-Promoted Inverse Electron-demand Diels-Alder Cycloaddition, SPIEDACは、様々な官能基が共存しても選択的に進行する「クリックケミストリー」の特性を備え、生体共役反応として用いられている。他の反応と比べても、金属触媒などを必要とせず、圧倒的に高速なことが最大の特徴である。

基本文献

  • Carboni, R. A.; Lindsey, R. V. J. Am. Chem. Soc. 1959, 81, 4342. DOI: 10.1021/ja01525a060
  • Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Bioconjugate Chem. 2008, 19, 2297. doi:10.1021/bc8004446
  • Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.  DOI: 10.1021/ja8053805
  • Devaraj, N. K.; Upadhyay, R.; Haun, J. B.; Hilderbran, S.; Weissleder, R. Angew. Chem. Int. Ed. 2009, 48, 7013. doi:10.1002/anie.200903233
  • Devaraj, N. K.; Hilderbran, S.; Upadhyay, R.; Mazitschek, R.; Weissleder, R. Angew. Chem. Int. Ed. 2010, 49, 2869. doi:10.1002/anie.200906120
  • Darko, A.; Wallace, S.; Dmitrenko, O.; Machovina, M. M.; Mehl, R. A.; Chin, J. W.; Fox, J. M. Chem. Sci. 2014, 5, 3770. doi:10.1039/C4SC01348D
<review>
<applications to in vivo Click Chemistry>
  • Seckute, J.; Devaraj, N. K. Curr. Opin. Chem. Biol. 2013, 17, 761. doi: 10.1016/j.cbpa.2013.08.004
  • Debets, M. F.; van Berkel,  S. S.; Dommerholt, J.; Dirks, A. J.; Rutjes, F. P. T. J.; van Delft, F. L. Nat. Rev. Chem. 2018, 2, 202. DOI: 10.1038/s41570-018-0030-x

反応機構

Diels-Alder反応の項目も参照。

SPAAC反応がおよそk = 10-2 ~ 10-1 M-1s-1程度であることに比べ、テトラジンSPIEDAC反応はk = 1 ~ 106 M-1s-1と極めて高速に進行することが特徴である。大まかな傾向としては、テトラジンが電子不足で立体障害が少ないほど、またアルケン・アルキン側の歪みが大きいほど反応速度は大きくなる(下図:

Synthesis 2017, 49, 830より引用・改変)。ただし反応の速い分子は不安定でもあり、生体系のシステインなどと反応して壊れて行きやすい。

反応例

生細胞内Click反応への応用[1]:細胞内反応への活用のためには104M-1s-1以上の速度定数が必要とされる(uM-nM濃度で数分以内に完結する速度)が、本反応はこの基準に適する。Mehlらはテトラジン部位を備えた細胞内GFPに対し、trans-シクロオクテンを反応させて速度定数を見積もっている[2]。また細胞内RNAを標的にした変換も検討されている[3]。

直交型SPIEDAC反応[4]:Lemkeらは、シクロオクチンは立体障害を理由に1置換テトラジンと優先的に反応し、trans-シクロオクテンは1置換・2置換テトラジン両者とも反応することを見いだしている。これを利用して連続的な直交的生体ラベル化を達成している。

化学decagingへの応用[5]:下図のように、カルバメート型trans-シクロオクテンはテトラジンとの生体直交反応により脱離を引き起こし、アミンを露出させる。この反応を利用して、低分子プロドラッグ化[6]、抗体―薬物複合体の薬物リリース[7]、細胞内酵素活性化目的[8]などにも活用されている。

 

参考文献

  1. Liu, D. S.; Tangpeerachaikul, A.; Selvaraj, R.; Taylor, M. T.; Fox, J. M.; Ting, A. Y. J. Am. Chem. Soc. 2012, 134, 792. DOI: 10.1021/ja209325n
  2. Blizzard, R. J.; Backus, D. R.; Brown, W.; Bazewicz, C. G.; Li, Y.; Mehl, R. A. J. Am. Chem. Soc. 2015, 137, 10044. doi: 10.1021/jacs.5b03275
  3. Pyka, A. M.; Domnick, C.; Braun, F.; Kath-Schorr, S. Bioconjugate Chem. 2014, 25, 1438. DOI: 10.1021/bc500302y
  4. Nikic, I.; Plass, T.; Schraidt, O.; Szymanski, J.; Briggs, J. A.; Schultz, C.; Lemke, E. A. Angew. Chem. Int. Ed. 2014, 53, 2245. doi:10.1002/anie.201309847
  5. Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W. S.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J.; Li, J.; Chen, P. R. Angew. Chem. Int. Ed. 2016, 55, 14046. doi:10.1002/anie.201608009
  6. Versteegen, R. M.; Rossin, R.; ten Hoeve, W.; Janssen, H. M.; Robillard, M. S. Angew. Chem. Int. Ed. 2013, 52, 14112. doi:10.1002/anie.201305969
  7. Rossin, R.; van Duijnhoven, S. M.; ten Hoeve, W.; Janssen, H. M.; Kleijn, L. H.; Hoeben, F. J.; Versteegen, R. M.; Robillard, M. S. Bioconjugate Chem. 2016, 27, 1697. DOI: 10.1021/acs.bioconjchem.6b00231
  8. (a) Li, J.; Jia, S.; Chen, P. R. Nat. Chem. Biol. 2014, 10, 1003. doi:10.1038/nchembio.1656 (b) Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P. R. ACS Cent. Sci. 2016, 2, 325. DOI: 10.1021/acscentsci.6b00024

関連書籍

[amazonjs asin=”B06XRRCBKB” locale=”JP” title=”Chemoselective and Bioorthogonal Ligation Reactions: Concepts and Applications (English Edition)”][amazonjs asin=”B01JAIPFIE” locale=”JP” title=”Cycloadditions in Bioorthogonal Chemistry (Topics in Current Chemistry Collections) (English Edition)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. MAC試薬 MAC Reagent
  2. ゾーシー・マーベット転位 Saucy-Marbet Rearra…
  3. アフマトヴィッチ反応 Achmatowicz Reaction
  4. フリッチュ・ブッテンバーグ・ウィーチェル転位 Fritsch-B…
  5. テッベ試薬 Tebbe Reagent
  6. 有機銅アート試薬 Organocuprate
  7. ベンジジン転位 Benzidine Rearrangement
  8. マクマリーカップリング McMurry Coupling

注目情報

ピックアップ記事

  1. ビナミジニウム塩 Vinamidinium Salt
  2. カネカ 日本の化学会社初のグリーンボンドを発行
  3. 論文のチラ見ができる!DeepDyve新サービス開始
  4. ノーベル化学賞は化学者の手に
  5. 抗体触媒 / Catalytic Antibody
  6. 炭素置換Alアニオンの合成と性質の解明
  7. 副反応を起こしやすいアミノ酸を迅速かつクリーンに連結する
  8. 海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~
  9. 福山還元反応 Fukuyama Reduction
  10. 総収率57%! 超効率的なタミフルの全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP