[スポンサーリンク]

N

求核置換反応 Nucleophilic Substitution

[スポンサーリンク]

 

概要

各種の電子豊富な化学種(求核種:Nu)は、求電子剤としての基質を攻撃し、脱離基(L)と置換反応を起こす。これを求核置換反応(Nucleophilic Substitution)と総称する。

脂肪族炭素上における反応の場合、sp3炭素に脱離基を有する基質とは反応する。sp2もしくはsp炭素上に脱離基があっても、特別な場合以外には求核置換を起こすことはない。

芳香族化合物も通常求核置換に対して不活性であるが、電子求引性置換基をもつ芳香環や、ピリジンなどの電子不足複素環などを基質とする場合には、求核置換反応を起こしうる(芳香族求核置換反応)。

カルボニル炭素はsp2混成であるが、カルボニル基の電子求引性ゆえに、求核置換反応を考えることができる(求核的アシル置換)。

基本文献

<Walden Inversion>

  • Walden, P. Ber. 1895, 28, 1287, 2766.
  • Bent, H. A. Chem. Rev. 1968, 68, 587. DOI: 10.1021/cr60255a003

 

反応機構

一般に脱離基Lは、脱離した状態が安定である=その共役酸のpKaが高いほど、性能が良いとされる。たとえば脂肪族求核置換反応におけるハロゲン脱離基の性能序列は、I>Br>Cl>>Fとなる。

脂肪族炭素上の求核置換反応は、以下のように大別される。

①単分子求核置換反応(SN1反応)

・まず脱離基が解離して平面状のカルボカチオン中間体を生じ、そこへひき続き求核剤が反応する二段階的機構で進行する場合、これをSN1反応と呼称する。
・ 一般に脱離基の解離が律速段階である。反応速度は基質の濃度のみに依存し、求核剤の濃度には非依存。1次の反応速度式で表される。
・求核攻撃はカルボカチオンの前背面いずれからも起こりうる。このため、攻撃を受ける炭素の立体化学は一部消失する。
・溶媒はカルボカチオンを安定化に十分な双極子モーメントを持ち、かつ脱離基を溶媒和して安定化できるものが反応を加速させる。果たして水やアルコールなどのプロトン性極性溶媒が好んで用いられる。
・求核剤の性能が低く塩基性の強い場合には、カチオン性中間体からの脱離反応(E1脱離)が競合する。またカチオン性転位反応(Wagner-Meerwein転位)も競合反応の一つ。

SN12_3.gif

・基質が生じるカルボカチオンの安定性が高いほど、SN1反応は起こりやすくなる。すなわち、SN1の反応性は3級>2級>>1級>>メチルとなる。ベンジル位やアリル位などもカルボカチオンを安定化する効果があるため、SN1反応を起こしうる。
・ 級数が高いほどカルボカチオンが安定になる理由は、隣接置換基からの超共役(hyperconjugation)で説明される。すなわち、カルボカチオンの空p軌道の隣接位に、電子の充填されたσ軌道が存在する場合、これが同一平面上に並ぶとσ→pへと電子の流れこみ(非局在化)が起こり得る。置換基の数が多いほど、この効果は大きくなるので、カルボカチオンの安定性は3級>2級>1級>メチルとなる。

SN12_6.gif

②二分子求核置換反応(SN2反応)

・求核試薬の結合と、脱離基の解離が同時(協奏的)に起こる場合、これをSN2反応と呼称する。求核剤・脱離基が中心炭素を挟んで反対方向に位置する、三方両錐型の遷移状態を取る。求核攻撃を受ける炭素の立体化学は反転する(Walden反転)。
・反応速度は基質と求核剤の濃度双方に1次ずつ依存する。すなわち、全体で反応速度は2次の速度式で表される。
・背面が立体的に混み合っていない基質ほど反応が早くなる。すなわち、SN2の反応性はメチル>1級>2級>>3級となる。3級炭素上においては、特別な場合を除きSN2は起こらない。
・溶媒としては、DMFやDMSOといった、非プロトン性極性溶媒が好んで用いられる。カウンターカチオンに溶媒和しつつも、求核剤を溶媒和せず裸のアニオンにすることで、反応性を向上させる効能を持つ。
・求核剤の性能が低く塩基として働いてしまう場合には、脱離反応(E2/E1cb脱離)が競合する。

SN12_2.gif

③分子内求核置換反応(SNi反応)

ある特別な場合には、分子内で求核置換反応が起こる。典型例は塩化チオニルによるアルコールの塩素化である。この場合には脱離と求核攻撃が同じ側から起きるため、立体化学は保持される。求核剤担持型脱離基などを用いる系でも、SNi反応を起こすことが可能。

SN12_4.gif

④アリル位求核置換反応(SN1’/SN2’反応)

アリル位に脱離基をもつ基質での置換反応は、反応点が2通り考えられる。脱離基に対してα位での置換反応を起こす場合は、通常のSN1/SN2反応と同様である。しかし脱離基に対してγ位にあるsp2炭素に対する攻撃も許容である。この場合には2重結合の移動を起こしつつ、脱離基を追い出す形式をが取られる。SN1’/SN2’反応と呼ばれる。

SN12_5.gif

芳香族求核置換、求核的アシル置換に関しては別項を参照。

  • 反応例

超脱離基であるヨードニウムイオンをもつアルケンは、sp2炭素上においても反転を伴って求核置換反応を起こすことが知られている。

SN12_7.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

 

関連反応

 

関連書籍

 

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. シャープレス不斉アミノヒドロキシル化 Sharpless Asy…
  2. ワーグナー・メーヤワイン転位 Wagner-Meerwein R…
  3. ゴールドバーグ アミノ化反応 Goldberg Aminatio…
  4. ミズロウ・エヴァンス転位 Mislow-Evans Rearra…
  5. コーリー・ニコラウ マクロラクトン化 Corey-Nicolao…
  6. エタール反応 Etard Reaction
  7. モンサント酢酸合成プロセス Monsanto Process f…
  8. シュミット グリコシル化反応 Schmidt Glycosyla…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. トップ・ドラッグ―その合成ルートをさぐる
  2. 中村 浩之 Hiroyuki Nakamura
  3. 人生、宇宙、命名の答え
  4. 有機合成化学協会誌2018年3月号:π造形科学・マグネシウムカルベノイド・Darzens反応・直接的触媒的不斉アルキニル化・光環化付加反応
  5. 【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ
  6. 分析化学の約50年来の難問を解決、実用的な微量分析法を実現
  7. 有機触媒 / Organocatalyst
  8. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1
  9. JSR、東大理物と包括的連携に合意 共同研究や人材育成を促進
  10. 神経細胞の伸長方向を光で操る

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

マテリアルズ・インフォマティクスにおける分子生成の基礎

開催日:2023/10/11 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

はやぶさ2が持ち帰った有機化合物

小惑星リュウグウから始原的な「塩(Salt)」と有機硫黄分子群を発見(9月18日JAMSTECプレス…

Let’s Make Wave , Make World. −マイクロ波で!プロセス革新ワークショップ −

<内容>マイクロ波のプロと次世代プロセスへの転換に向けた勘所を押さえ、未来に向けたイノベーシ…

ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発

第566回のスポットライトリサーチは、京都大学化学研究所 物質創成化学研究系 有機元素化学領域 (山…

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた

bergです。この度は2023年9月8日(金)に慶応義塾大学 矢上キャンパスにて開催された西林教授の…

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP