[スポンサーリンク]

化学者のつぶやき

鉄触媒を使い分けて二重結合の位置を自由に動かそう

[スポンサーリンク]

鉄触媒によるオレフィンの位置選択的異性化反応が報告された。鉄触媒を使い分けることで、本異性化の位置選択性をスイッチングできる。

鉄触媒を用いたオレフィンの位置選択的異性化反応

 オレフィンの位置選択的異性化反応は、原子効率に優れ、また既存の方法では困難なオレフィン合成も可能にする。本反応の開発研究が数多くなされ、これまでに様々な遷移金属触媒反応が知られる。しかし、これらは末端オレフィン限定的であり、一つ隣の炭素への異性化がほとんどである。例外としてPd、Ru、Ni触媒や可視光レドックス/Co触媒を用いれば内部オレフィンを複数炭素上異性化できることが知られる[1]。このようなオレフィンの位置異性化を、地球上に豊富に存在する安価な鉄を触媒として達成する研究もされている。2011年にJacobi von Wangelinらが、2012年にBellerらがそれぞれ鉄触媒によるオレフィンの位置異性化を報告した(図2A)[2]。しかし、いずれも末端オレフィンに限られており、かつ、隣の炭素への異性化しかできなかった。

一方で、2015年にQuらは鉄触媒と塩基存在下、B2pin2、プロトン源にtBuOHを用いるオレフィンのヒドロホウ素化を報告した (図2B)[3a]。2020年にKohらも類似の反応を開発した[3b]。この反応は、オレフィンとB2pin2と鉄触媒が反応して生成するボリルアルキル鉄中間体Aがプロトン化することで進行する。今回、シンガポール国立大学のKohらはこのヒドロホウ素化から着想を得て、プロトン源非存在下であれば、中間体Aのβ-水素脱離を経て鉄ヒドリド(Fe–H)種が生成し、これがオレフィンの位置異性化における活性種となりうると考えた。検討の結果、Kohらは鉄触媒と、触媒量のB2pin2(またはシリルボラン)/LiOtBuを用いることでオレフィンの位置異性化が進行することを見いだした(図2C)。本反応は、鉄触媒の使い分けにより、末端オレフィンの一炭素異性化と二炭素以上の異性化のスイッチングが可能である。

図1. (A) 先行研究 (B) オレフィンのヒドロホウ素化 (C) 本反応

 

“Iron-Catalyzed Tunable and Site-Selective Olefin Transposition”

Yu, X.; Zhao, H.; Li, P., Koh, M. J. J. Am. Chem. Soc. 2020, 142, 18223–18230.

DOI: 10.1021/jacs.0c08631

論文著者の紹介


研究者:Ming Joo Koh (研究室HP)

研究者の経歴:

2008–2012 B.Sc., Nanyang Technological University, Singapore (Prof. Philip W. H. Chan)

2012–2018 Ph.D. and Postdoc, Boston College, USA (Prof. Amir H. Hoveyda)

2018– Assistant Professor, National University of Singapore, Singapore

研究内容:卑金属触媒を用いたオレフィンの位置選択的変換反応の開発、ラジカルを用いた新規クロスカップリング反応の開発、単原子の不均一系触媒を用いる有機合成(共同研究)

論文の概要

本反応は、Fe-1触媒存在下、触媒量のB2pin2とLiOtBuを添加することで、芳香環やヘテロ原子をもつ末端オレフィン(1a, 1b)が一つ隣の炭素に異性化し、内部オレフィン(2a, 2b)を高収率で与える(図2A)。触媒をFe(OAc)2に変更し、PhMe2SiBpin、LiOtBu存在下1a2aを反応させると、オレフィンの異性化が連続的に進行し、熱力学的に最も安定な(E)-内部オレフィン(3a, 3b)が高位置、ジアステレオ選択的に生成した。さらに、Fe(OAc)2触媒、B2pin2、LiOtBuを用いる条件下、オレフィンの位置·幾何異性体の混合物(1c, 1d, 1e)から、単一のオレフィン3cを高収率で得ることも可能である(図2B)。

著者らは次のような機構を提唱した(図2C)。まず、図1Cに示したように鉄触媒、LiOtBu、X–Bpin (X = BpinまたはPhMe2Si)とアルケン1からFe–H錯体が生成する。このFe–H錯体が本反応の活性種となり、オレフィン1の挿入とb-水素脱離が連続的に起こるchain-walking機構で本異性化が進行し、内部オレフィン2が生成する。Fe-1を触媒とした場合、触媒の嵩高さから内部オレフィンの挿入反応が抑制され、オレフィンの一炭素異性化で反応が止まると著者らは述べている。

図2. (A) 最適条件と基質適用範囲 (B)オレフィン混合物の収束的変換 (C) 推定反応機構

以上、鉄触媒を用いた位置選択的なオレフィンの異性化反応が開発された。安価な触媒によって位置選択性の制御が可能な本手法は、今後、種々の有機合成の場面で応用されると期待できる。

 参考文献

  1. (a) Murai, M.; Nishimura, K.; Takai, K. Palladium-Catalyzed Double-Bond Migration of Unsaturated Hydrocarbons Accelerated by Tantalum Chloride. Chem. Commun. 2019, 55, 2769–2772. DOI: 10.1039/c9cc00223e (b) Wakamatsu, H.; Nishida, M.; Adachi, N.; Mori, M. Isomerization Reaction of Olefin Using RuClH(CO)(PPh3)3. J. Org. Chem. 2000, 65, 3966–3970. DOI: 10.1021/jo9918753 (c) Kapat, A.; Sperger, T.; Guven, S.; Schoenebeck, F. E-Olefins through Intramolecular Radical Relocation. Science 2019, 363, 391–396. DOI: 10.1126/science.aav1610 (d) Meng, Q.-Y.; Schirmer, T. E.; Katou, K.; König, B. Controllable Isomerization of Alkenes by Dual Visible-Light-Cobalt Catalysis. Angew. Chem., Int. Ed. 2019, 58, 5723–5728. DOI: 10.1002/anie.201900849
  2. (a) Mayer, M.; Welther, A.; Jacobi von Wangelin, A. Iron-Catalyzed Isomerizations of Olefins. ChemCatChem 2011, 3, 1567–1571. DOI: 1002/cctc.201100207 (b) Jennerjahn, R.; Jackstell, R.; Piras, I.; Franke, R.; Jiao, H.; Bauer, M.; Beller, M. Benign Catalysis with Iron: Unique Selectivity in Catalytic Isomerization Reactions of Olefins. ChemSusChem 2012, 5, 734–739. DOI: 10.1002/cssc.201100404
  3. (a) Liu, Y.; Zhou, Y.; Wang, H.; Qu, J. FeCl2-Catalyzed Hydroboration of Aryl Alkenes with Bis(pinacolato)diboron. RSC Adv. 2015, 5, 73705– DOI: 10.1039/C5RA14869C (b) Yu, X.; Zhao, H.; Xi, S.; Chen, Z.; Wang, X.; Wang, L.; Lin, L. Q. H.; Loh, K. P.; Koh, M. J. Site-Selective Alkene Borylation Enabled by Synergistic Hydrometallation and Borometallation. Nat. Catal. 2020, 3, 585–592. DOI: 10.1038/s41929-020-0470-9
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アゾ重合開始剤の特徴と選び方
  2. 文具に凝るといふことを化学者もしてみむとてするなり⑥:実験室でも…
  3. 芳香族求核置換反応で18Fを導入する
  4. 【書籍】化学探偵Mr.キュリー4
  5. 実験白衣を10種類試してみた
  6. 【ワイリー】日本プロセス化学会シンポジウム特典!
  7. 工業生産モデルとなるフロー光オン・デマンド合成システムの開発に成…
  8. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成…

注目情報

ピックアップ記事

  1. パラジウム価格上昇中
  2. 【3月開催】第六回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の架橋剤としての利用-有機溶剤系での利用-
  3. 多重薬理 Polypharmacology
  4. 表面処理技術ーChemical Times特集より
  5. ビニル位炭素-水素結合への形式的分子内カルベン挿入
  6. 「科学者の科学離れ」ってなんだろう?
  7. カーボンニュートラルへの化学工学: CO₂分離回収,資源化からエネルギーシステム構築まで
  8. デンドリマー / dendrimer
  9. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  10. Nsアミン誘導体

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP