[スポンサーリンク]

一般的な話題

危険ドラッグ:創薬化学の視点から

[スポンサーリンク]

危険ドラッグ」の怖さは映像の力により世間に浸透しつつあります。しかし、指定薬物に指定されない新種の商品が次々登場し、それを使用する人々が大きな事故を起こすという悪循環が今も続いています。

本投稿では、なぜ危ないのか、なぜ次々新しい化合物が登場し取り締まる側と製造・販売側の「いたちごっこ」になっているのか、について創薬化学の立場から考えてみたいと思います (トップ画像はjiji.comから改変)。

 

危険ドラッグとは

 

危険ドラッグ

危険ドラッグ

厚生労働省では、指定薬物を

『薬事法では中枢神経系の興奮若しくは抑制又は幻覚の作用(当該作用の維持又は強化の作用を含む。)を有する蓋然性が高く、かつ、人の身体に使用された場合 に保健衛生上の危害が発生するおそれがある物を指定薬物(厚生労働省HP(1))』

と定義しています。それら「指定薬物」は現在、1300化合物以上に達しています。脱法ドラッグが注目される以前から、指定薬物は、医療行為等特別な場合を除き

『製造、輸入、販売、授与、又は販売若しくは授与の目的での貯蔵、若しくは陳列 (1)

が禁止されています。しかし、以前の規制では、所持者が法を犯さない限り罰することができませんでした。そこで、

『平成26年4月1日より指定薬物の所持、使用、購入、譲り受け (2)

が新たに規制され、所持者を法で罰することができるようになりました。

 

薬と毒(危険なドラッグ)は紙一重

指定薬物の中には、実際に現在も医療現場で薬として使用されているものも多くあります。では、薬と危険なドラッグの違いはどこにあるのでしょう。一言でいうとその違いは用量に基づく場合と構造に基づく場合が考えられます。以下にその違いを少し詳しく記載します。

『用量に基づく違い』を「therapeutic window」もしくは「therapeutic index」の考え方を用いて説明します。

therapeutic windowとは、治療が有効に安全に行える用量(dose)範囲を意味し、therapeutic windowの範囲より高い用量で薬物は毒性を示します。

therapeutic index(治療指数)は、LD50(投与された動物の半数が死亡する用量)/ED50(投与された動物の半数が効果を示す用量)の値で定義され、指数が小さいと治療可能域が狭いこと意味します。どちらもdoseに基づく考え方で、薬は用量次第で毒になることを示します。この考えに基づけば、指定薬物の一部が医療現場で使用される理由が理解できます。

次に『構造に基づく違い』を、SAR(構造活性相関)という考え方を用いて説明してみます。

SARとは「化学構造の変化とその生物活性から、化学構造と生物活性との間の関係を検討する(3)」ことをいい、定性的な解析も定量的な解析も含むが、定性的な意味で用いることが多いです。実際の創薬現場では、薬の構造を少し(例えばMethylを1つ加えるもしくは除く)変化させた時、毒性発現が薬効発現より優位になることもその逆の変化を起こすこともしばしばおこります。これは、化合物の構造変化による薬効と毒性への相関が異なるためにおこると考えれば理解できます。小分子創薬は、薬効と毒性(安全性)のバランスがとれた化合物を見出すというMedicinal Chemists達の職人技の上に成り立っています。薬となる化合物は、ムダな原子が1つもなく全ての原子がなんらかの機能をもった磨き抜かれた化合物です。これは逆に、薬以外の周辺化合物の大半が薬効か安全性に問題がある可能性が高いとも言う事ができますし、危険ドラッグの種になり得ると言う事もできます。

 

なぜ、イタチごっこになるのか?

例2-2

図1 指定化合物例 厚生労働省HPより抜粋

 

図1をご覧下さい。一目で違いがわかりますか?このようにほんの少し構造が違うだけで一化合物ずつ指定しなければいけないわけですから、取り締まる側が常に後手に回るのは当然です。ではなぜ、一化合物ずつ指定する必要があるのでしょうか。

化合物を指定薬物で規制するには、その毒性を動物試験等で確認する必要があります。試験は一化合物ずつ行う必要があるので、指定も一化合物ずつとなります。指定まで時間がかかるのもこのためです。しかし、一化合物ごとの指定法は危険ドラッグ関係者に対し優位に働きます。安全性を無視すれば、薬の構造や既知の麻薬の構造から、より簡単で安価に合成できる化合物を見出す事はそれほど難しいことではありません。国はなぜ特許のようにある化合物の周辺構造を全て指定する方法をとらないのでしょうか。

特許的指定法は製薬企業にとって大きな障害となることが推察されます。このことが、国の対策に対して「一部利益者のため」徹底的に排除する意思がない等、批判的な意見の源になっているようです。では、指定薬物の特許的指定を可能とした場合、どのような問題が生じるのか考えてみたいと思います。通常、小分子薬は、体内で複数個の標的があると考えます。このことが、副作用の原因の1つ(off target)となる場合も臨床上の薬効発現につながる場合もあります。また、似た顔(構造式)をしていても全く異なる標的に作用する事例も数多く報告されています。つまり、化合物の顔が類似しているから薬の標的が同じだとは必ずしも言えないということです。特許的指定法を採用した場合、広い範囲で化合物を指定することが可能になり、罪のない化合物まで規制の対象となるため、指定した化合物群全てが指定薬物に値する蓋然性が乏しく、その法の根拠が存在しないという問題がおこります

特許的指定法には法的根拠が存在しないことを鑑みると、「使用、所持」まで刑罰を与え、かつ、すみやかに指定化合物を追加していく手法は、即効性がある現実的対策であると考えられます。

 

危険ドラッグの恐ろしさ

脱法ドラッグから危険ドラッグとして迅速に法制化された理由は、その作用発現の強さ・早さと薬物依存性にあります。作用の強さの理由として、安全性を無視していることが大きいと思われます。薬効の強さのみを追い続けることは比較的容易です。他の原因として、体内への吸収方法に問題があると考えられます。薬が作用を発現するには、なんらかの過程で体外から体内に化合物を取り込む必要があります。危険ドラッグは煙として吸い込むことで作用を発現することから、鼻腔もしくは肺から体内に吸収されると考えられます。鼻腔や肺から吸収される場合、初回通過効果を受けない利点(4)があるため微量でも強い薬効を発現すると考えられます。誤解のない範囲で簡単にいうと、初回通過効果とは、経口投与等で体内に化合物が吸収される際、化合物が全身を循環する前に肝臓や腸管壁等で代謝をうけることをいいます。

薬効の効果発現の早さに関しては、吸収経路が関係する場合と他の体内動態の因子や作用メカニズム等別の因子が関係する場合があります。このため、一概に効果発現が早い理由が鼻腔(肺)吸入にあるとは言えないと考えます。

最後に簡単に薬物依存性に関して。歴史的に脳内に作用する多くの化合物は薬物依存性を有しており、目的の薬効と薬物依存性の作用を乖離させることは1つの重要なテーマになってきました。そのため、薬以外の周辺化合物に依存性が強く出る事は容易に想像できます。

 

まとめ

以上創薬化学の観点から、危険ドラッグについて考えてみました。悲惨な事故を失くすには、危険ドラッグのリスクを地道に啓蒙することが、長い目でみた場合、有効な解決法となるでしょう。需要がなくなれば供給もなくなります。寄稿した知見が、なんらかの形で危険ドラッグを手にする人の数を減らす事につながればと願っています。

 

参考資料

  1. 厚生労働省HP
  2. http://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/iyakuhin/yakubuturanyou/index.html
  3. 「メディシナルケミストリー 用語解説 260」 編集 日本薬学会、じほう
  4. http://kusuri-jouhou.com/pharmacokinetics/kyuushuu.html

 

関連書籍

MasaN.

MasaN.

投稿者の記事一覧

博士(工)。できる範囲で。

関連記事

  1. テキサス大教授Science論文捏造か?
  2. ホットキーでクールにChemDrawを使いこなそう!
  3. ケミストリ・ソングス【Part1】
  4. ニコラウ祭り
  5. 化学者のためのエレクトロニクス講座~5Gで活躍する化学メーカー編…
  6. イグ・ノーベル賞の世界展に行ってきました
  7. 第10回次世代を担う有機化学シンポジウムに参加してきました
  8. 化学と権力の不健全なカンケイ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. デヴィッド・クレネマン David Klenerman
  2. ハウザー・クラウス環形成反応 Hauser-Kraus Annulation
  3. Org. Proc. Res. Devのススメ
  4. ルーブ・ゴールドバーグ反応 その2
  5. イレッサ /iressa (gefitinib)
  6. ハートウィグ有機遷移金属化学
  7. フェネストレンの新規合成法
  8. 挑戦を続ける日本のエネルギー企業
  9. 炭素をつなげる王道反応:アルドール反応 (2)
  10. 中外製薬、抗悪性腫瘍剤「エルロチニブ塩酸塩」の製造販売承認を申請

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

「つける」と「はがす」の新技術|分子接合と表面制御 R3

開講期間令和3(2021)年  9月8日(水)、9日(木)(計2日間)※状況により、we…

第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!

少し前に化学者のつぶやきからこのような記事が出ました:【ケムステSlackに訊いて見た④】化学系学生…

10種類のスパチュラを試してみた

大好評、「試してみた」シリーズの第6弾。今回は試薬の秤量にか欠かせない、…

第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授

久々の研究者へのインタビューです。第48回は、立教大学の森本正和先生にお願いいたしました。第17回ケ…

畠山琢次 Takuji Hatakeyama

畠山琢次 (はたけやま たくじ)は、日本の化学者である。専門は有機合成化学,材料化学。2021年現在…

DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―

(さらに…)…

NBSでのブロモ化に、酢酸アンモニウムをひとつまみ

芳香環のブロモ化といえば、構造活性相関の取得はもちろんの事、カップリング反応の足場と…

森本 正和 Masakazu Morimoto

森本 正和(もりもと まさかず、MORIMOTO Masakazu)は、日本の化学者である。専門は有…

Chem-Station Twitter

PAGE TOP