[スポンサーリンク]

一般的な話題

高純度フッ化水素酸のあれこれまとめ その1

[スポンサーリンク]

Tshozoです。

どっかの国とあっちの国とで色々やってますが、そのドタバタの理由の1つであるフッ酸(含水フッ化水素・hydrofluoric acidと無水フッ化水素・Anhydrous hydrofluoric acid)。既にZeolinite殿によってその背景と概要(リンク)がうまくまとめられているほか、化学/化学工学系で最も重要なこちらのblogで政治背景も含めて紹介されたりしていますが、過去に筆者に起きた諸々の事々を十二分によく思い出したうえで自分の勉強も含めてもう少しこの材料に絞り化学寄りにまとめてみようと思いました。

【フッ化水素の歴史と概要】

ここは抜粋だけ。フッ化水素はスウェーデンのヴィルヘルム・シェーレが見つけた物質で、当時からガラス表面を曇らす材料としての認識はあったようです。ただそこから100年ほど用途は広がらず、フランスの化学者モアッサンがフッ化水素からフッ素ガスを取り出せる必要材料のひとつとして使えるのを示したことを端緒に(過去記事 こちら)、フッ化物への原料として様々な用途が拡がったことから市場が広がった、ということのようです(下図)。

フッ素マテリアルフロー イメージ[文献1より編集して引用] HFのところで「販売」と書いてあるがここが本記事のポイント

また日本での発展は、フッ化水素製品のパイオニアで今も大きな存在感を示している森田化学工業創業者の森田鎌三氏により高純度フッ化水素の合成方法が確立され、東芝の前身会社が製造する電球内部を曇ガラスにして柔らかい光を作るためのエッチング剤として大きく需要が伸びたのがきっかけとなったようです[文献2]。まず無機工業部品の加工需要から発展していったという事象は非常に興味深いですね。その後欧米と同じように様々な機能性材料への展開が進んだのは言うまでもありません。

で、これらを詳細化したものが下図。最終製品類はフロンガス、テフロン、ウラン濃縮用途、エッチングガスといずれも大量には販売されませんが無いと非常に困るものばかり。あんまり大きな声では言えませんがこのフロー内にはウラン濃縮用途以外にも安全保障上非常に重要なものが多数混じっており、これらの原点となるフッ化水素は極めて貴重かつ不可欠な材料の根幹であるというわけです。

[文献3]より引用 HF=Acidsparと記載されているが
加工用高純度フッ化水素の用途は記載されていないので注意

【実際の合成とサプライヤーたち】

ここは合成のはなし。まずは蛍石(CaF2・通称Fluorspar/Fluororite)から始まります。現在この蛍石の世界市場の生産量のトップは中国が占めており、次にメキシコ、南アフリカ、ベトナム、モンゴルと続きますが上位2国でほぼ7割近くシェアをとっており[文献4]この状況は当面揺らぐことはないでしょう。賦存量はアフリカもかなり多いらしいのですが政情安定性とサプライチェーンがアジアの方が強靭で、原料品位も中国産が圧倒的らしいためだそうで。

その蛍石は大きく5つの純度グレードに分けられており、半導体用途には97%以上の純度を持つ高品位なものが選ばれます。いつも勉強させて頂いているだぶ先生のツイートにもあるように第二次世界大戦終了前は北朝鮮からの輸入が多かったそうなのですが黒電話の爺様がやらかしてから中国へ生産がシフトしたようですね。まぁ北朝鮮自体は今も昔も実質的に中国の鉄砲玉であるため実際には第三国経由で混流していた可能性は否定できないのですが・・・蛇足ですが北朝鮮の問題が国際的に明らかになる以前に某社に供給されていたとある材料は非常に高品位なものだったらしく、資源としてはどれも上質なものが採れていた(る)もようです。

高純度蛍石のイメージ [文献1]より引用
実際には紫水晶やヒスイのような色のものもある

で、実反応はこの高純度蛍石を加熱連続回転炉(ロータリーキルン)の中で濃硫酸で煮ることで進むわけなのですが、フッ化水素水溶液は高濃度HF域(>~40wt%)程度で水と共沸を起こすため、”無水”フッ化水素をつくるためには事前に出来るだけ脱水を行う必要があります。このためまず材料精製が肝要になり、濃硫酸で煮るロータリーキルンに放り込む前に発煙硫酸を添加して脱水して出来るだけ反応物純度を上げる工夫がなされているとのこと。その結果出てくるガスを20℃付近で冷却し、さらにそこから低沸点成分を濃硫酸などで除去して出来上がり、となります。

[文献5]より引用 ロータリーキルンで蛍石と硫酸をゴロゴロ高温で混ぜて
出てくるHFガスを「洗って」「冷やして」「精留して」ようやく得られる
正直に言うとお近づきになりたくないプラント

欧米で存在感を見せるHF系プラント製造会社”Buss Chemtech”による
蛍石-硫酸用ロータリーキルン(同社リンク) かなりの老舗

こうした反応・洗浄・凝集・蒸留によって出てくるのは無水高濃度フッ化水素で、それを更に高純度化したり超純水とかを混ぜて出てくるのが半導体などでエッチング剤として用いられる含水高純度フッ化水素になります。・・・簡単に書いていますがフッ化水素は毒物であり一歩間違えると作業員を含め周囲の住人が即死または重症になってしまうレベルの材料であるため[文献6](2012年の韓国での事件など・リンク)、関わっている各社は安全を最優先にしつつ高純度を追及し、さらに維持するという極めて難易度の高いプラントを運営していることになります。

つまり容器に使う耐腐食性コーティングはもちろん計器、シール、構造、全てが何重もの安全対策とノウハウが詰め込まれたものでなければ実現できない特殊領域の材料で、部分的にはハステロイなどの高耐食金属も使っているようですが、おそらく設備のほとんどの液接触部が変性PTFE系のコーティング材を使用していると思われ、個人的には移動禁止物質になってもおかしくないんじゃないのかという印象を受けます。また取扱いに長けた企業であっても停電などの思わぬトラブルで外部に漏らしている例があったりしますので(2008年のステラケミファ社による漏えい事故など:リンク)どのレベルであっても油断が出来ないのですね。

で、この無水フッ化水素(Anhydrous Hydrogen Fluoride/AHF)ですが、日本国内では旭硝子、セントラル硝子、三菱マテリアル電子化成と昭和電工(未記載)により合成されていて[文献7]、そこから高濃度~低濃度フッ化水素酸にはステラケミファ、上記の森田化学工業、そしてダイキン(未記載)の3社が活躍しているのが現状です。

[文献7]より引用 数字は少し古いので注意 あくまで国内分
(たとえば森田化学、昭和電工は既に韓国や中国などで無水HFを生産しているもよう)
今回問題になりそうなのは赤線で囲った部分

蛇足ですが、海外ではHoneywell, Solvay, Bayer, Fluorchemie あたりが結構な生産量をたたき出しており、最近は中国メーカも相当量合成しているもようですね(データ古いですが2002年時点での世界生産量が掲載されている唯一のページはこちら)。

んで今回問題になっているのはそのうち超高純度フッ素水素について。その純度、12N(99.9999999999%)という常軌を逸したレベル[ステラケミファ殿の公開情報:こちら]。どうやって分析するのかすら筆者ごときでは想像もつかず、それこそ虎の子の技術のはず。特に低コストでプロセス的にも実績の多いウェットエッチングに用いられる後者の無水フッ化水素(実際には超純水で薄めて使用)を12Nレベルで製造・供給できるのは世界を見渡しても上記の3社しか見当たらず(森田化学とステラケミファは中国・韓国でも一部作ってるようだが今回の規制はそれらも対象になるもよう)、そこに名だたる半導体会社が依存しているところに今回の騒動のキモがあるということになります(注:昭和電工殿が開発した技術である無水高純度フッ化水素(リンク)ダイレクトエッチングは、無水HFガスと直接SiO2とを反応させて反応物を昇華させるというかなりダイナミックなプロセスなのですがまだウェットエッチングほど適用が進んでいないようであるため、以下これを除外して話を進めます)。

【その用途と特殊性】

含水超高純度フッ化水素が使われるウェットエッチングプロセスは、下の動画のように半導体製造には無くてはならないものになっています。

エッチング工程のイメージ Zeolinite殿の記事から再掲
3:00あたりからの工程がHFの出番

ウェットエッチングで出来る等方性パターンのイメージ[文献8より引用]
アスペクト比は伸ばせないが工程自体は単純で安い
これに比べガスエッチングは深く掘れるが装置が高くなり、
どちらかというとMEMS向きプロセスでBoschやエプソンなどが強い

このウェットエッチングは基本的には対象物を溶かすだけの簡単な(!)プロセス。手元資料では高純度無水フッ化水素で10ppb(8N~9N)が実現出来ていたのがだいたい1985年くらいですからそこから40年近くかけてさらに10の4乗オーダで純度を上げてきたことになり、全く凄まじい技術力だとしか申し上げようがありません。原理的にはウェットエッチングは6N~9Nのフッ化水素酸でも使えなくはないから超純水さえ準備すれば出来てしまうのでしょうが、製造歩留りがクソ下がるのは明白で特に最近はシリコンウェハーが巨大化して一枚当たりの価格が挙がってきているためそこからいくつ良品を取り出せるかが利益率を左右する一つの因子になるわけで、多数回実施するエッチング工程でのコンタミ量は製造屋さんにとっては死活問題なわけです。またレジストを溶かすだけなら他の超高純度無機混合酸でもいいケースがあるのですが、SiO2はHFでしか溶かせない。ここに大きな意味があるわけです。

ちょっと長くなってきましたのでここからは「その2」へ・・・続きます。

[筆者注:20190907・化学と関係の薄い部分を一部記事から取り消し編集しました]

【参考文献】

  1. Pelchem発表資料 2014 August report, リンク
  2. “創業者偉人伝”, 大阪府工業協会, 2018年7月号, リンク
  3. “Accounting for fluorine: production, use, and loss”, Villalba, Ayres, and Schroder, Journal of Industrial Ecology (2008), リンク
  4. “Critical Metals and Minerals in Fennoscandia”, 2018, リンク
  5. “HF Production”, Eurofluor資料, リンク
  6. “ERSTVERSORGUNG VON AUGEN UND HAUTNACHKONTAMINATION MIT GEFAHRSTOFFEN”, Prevor社資料, リンク
  7. “鉱物資源マテリアルフロー 2014”, JOGMEC, リンク
  8. “講座:最近の微細加工技術”, 一般財団法人マイクロマシンセンター 広報誌より, リンク

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. クロム光レドックス触媒を有機合成へ応用する
  2. 青色LEDで駆動する銅触媒クロスカップリング反応
  3. サリンを検出可能な有機化合物
  4. ニルスの不思議な受賞 Nils Gustaf Dalénについて…
  5. 学術論文を書くときは句動詞に注意
  6. 多核テルビウムクラスターにおけるエネルギー移動機構の解明
  7. 構造式を楽に描くコツ!? テクニック紹介
  8. 分子運動を世界最高速ムービーで捉える!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  2. H・ブラウン氏死去/米のノーベル化学賞受賞者
  3. 就活・転職・面接・仕事まとめ
  4. 吸入ステロイド薬「フルタイド」の調査結果を発表
  5. シュレンクフラスコ(Schlenk flask)
  6. 長谷川 美貴 Miki Hasegawa
  7. ニトリル手袋は有機溶媒に弱い?
  8. 室温で液状のフラーレン
  9. 太陽光変換効率10%での人工光合成を達成
  10. 第24回ケムステVシンポ「次世代有機触媒」を開催します!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP