[スポンサーリンク]

スポットライトリサーチ

キラル情報を保存したまま水に溶ける不斉結晶

[スポンサーリンク]

第263回のスポットライトリサーチは、広島大学大学院工学研究科・日野 彰大さんにお願いしました。

結晶には左手系と右手系がある(キラルである)ことは古くから知られる事実です。分子間相互作用で分子が規則的に積み重なっている結晶は、水に溶かすと分子が普通はバラバラになってしまい、右左の情報はなくなってしまいます。しかし日野さんらは糖鎖と複合化することで、この情報を保ったままに水に溶かせるという、驚くべき事実を発見しました。ChemPhotoChem誌原著論文・プレスリリースに公開されています。

“Aggregation‐Induced Emission and Retention of Crystal Chiral Information of Tetraphenylethylene Incorporated by Polysaccharides in Water”
Hino,S.; Sugikawa, K.; Kawasaki, R.; Funabashi, H.; Kuroda, A.; Ikeda, A. ChemPhotoChem 2020, Early View. doi:10.1002/cptc.202000022

研究室を主宰されている池田 篤志 教授から、日野さんについて以下の人物評を頂いており、非常に人望豊かであることがうかがわれます。今回も現場のリアリティをお楽しみください!

 日野君とは、奈良先端科学技術大学院大学時代からの付き合いになります。一度、企業に行った後、広島大学にてもう一度研究がしたいということで、博士後期課程に受け入れました。いつも後輩が周りにいて、助教のように相談や実験の指導につきあってくれています。面倒見が良すぎると思うところもあるのですが、自身の実験は確実に進めてくれています。今回の研究は、日野君がこれまで行ってきた超分子化学と生化学の融合分野に、結晶学を組み込んだ新しい分野の開発につながるものと考えます。日野君のさらなる展開で、広い分野になることを期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

多糖類との複合化によって不斉結晶のキラル情報を維持したまま水溶化する方法を開発しました。不斉結晶とは,光学不活性な化合物が結晶化した際に「キラルな空間群」を持つことで光学活性となる結晶のことです。逆を言えば,不斉結晶を溶解または融解状態になると速やかにラセミ化が進行し,光学不活性な状態に戻ることを意味します。このように結晶状態でしか得られない不斉結晶のキラル情報を,そのまま維持して溶解させる方法はこれまでにありませんでした。
本研究では,食品添加物にも使用されているような,ありふれていて安価な多糖類と不斉結晶を形成するテトラフェニルエテン(TPE, 図1)を固体のまま混合し水で抽出するのみで,溶液中でも不斉結晶のキラル情報を維持していることを明らかにしました(図2)。さらに,用いた不斉結晶は凝集誘起発光(Aggregation Induced Emission; AIE)特性を持っており,かつキラルであることから水溶性円偏光発光材料としての応用も期待できます。

図1. TPEの分子構造。二重結合まわりのベンゼン環がある一定の方向に固定されることで,右巻きらせん(P-helicity)と左巻きらせん(M-helicity)の2種類のヘリシティが発生する。回転方向が時計回りと反時計回りになる4枚羽のプロペラをイメージするとわかりやすい。

図2. 本研究の模式図。(a) 均一溶媒中では,TPEはアキラルな化合物であるが,(b)結晶中においてはM型(左巻きらせん)とP型(右巻きらせん)の二種類の不斉結晶が得られる。結晶面の対称性で区別可能。(c)これらをそれぞれ多糖と共に混合するとキラルの情報が保持されたまま水溶化できる。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

思い入れというか思い出のような話になってしまいますが,一番印象に残っているのは,TPE結晶を100均の虫眼鏡を使って選り分けたことです。不斉結晶は見かけでは区別できず,Nujol法などを用いて固体状態における円偏光二色性(CD)スペクトル測定を行う必要があります。ただし,このTPEは図2(b)の写真のように結晶面の鏡面対称性で区別することができる数少ない例になります。一般的には,水晶(二酸化ケイ素)でも同様に結晶面に対称性が現れることがよく知られています。
キラル情報の維持を証明するには,やはり実際に不斉結晶を作るしかありません。ただ,不斉結晶の一方を作り分ける方法は知られておらず,つまりどちらの結晶がとれるかは予測不可能だということです。 そのため,同じ溶媒に溶かしたTPEをたくさんのバイアル瓶に取り分け,それぞれにできた結晶を一つ一つ区別していくしか方法がありません。その時用いたのが100均で売られていた虫眼鏡です。結晶が入ったシャーレを虫眼鏡で覗き込み,一心不乱に選り分ける私の様子は,きっと奇妙な姿だったと思います(笑)。(後から考えれば,誰かに光学顕微鏡を借りればよかったのですが…。)
この作業をしなければ,この研究はまとまらなかったと思います。正直,作るのがめんどくさいなとも思っていましたが,泥臭い作業もいとわずとにかくやってみる,手を動かすことも時には必要なんだと思います。

使った100均虫眼鏡

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究を今の形にまとめるのが一番難しかったです。そもそも,以前の研究(Photochem. Photobiol. Sci., 2019, 18, 2854.)で分かっていた,多糖複合体中でポルフィリン分子が凝集起因消光(Aggregation Caused Quenching; ACQ)を示すことに端を発して,AIE特性を持つ分子なら逆に蛍光強度が強くなるのでは,と興味本位で水溶化したことが始まりでした。思惑通りAIEによる強い蛍光が観測されましたが,それ以降この複合体をどのように活用し,まとめるのかを示せず,アイディアが出てこない日々が続きました。ある日,先生とのディスカッションの中で「CDスペクトル取ってみたら?」と提案されました。「アキラルなのにCDが出る訳ないよな…」と半信半疑で測定すると,TPEの吸収に対して,負のコットン効果が観測されました。予想もしなかった結果に驚きましたが,これで何となく方向性が決まってきたなあと少しホッとしたことを覚えています。
また,この光学活性は何が起源になっているのかを明らかにする(というより気づく)ことも難しかったです。その当時は「不斉結晶」という言葉すら知らなかったため,てっきりキラルな糖ユニットからなる多糖類がらせん構造を取ることで不斉が発生しているものと思っていました。先生もこの線を予想してCDスペクトル測定を提案したのだと思います。しかし,その頃たまたま読んでいた硤合先生(東理大)の不斉増幅に関する論文に,不斉源としてTPE不斉結晶を使っている記述(Origins Life Evol. Biospheres, 2010, 40, 65.)を見つけ,「これだ!」と感じました。しかも,結晶のCDスペクトルが私たちの系のスペクトルとほぼ一致していたため,「これは間違いない!」と確信しました。
用いた物質はシンプル,調製方法も簡単なだけに,論文調査が少しおろそかになっていた気がします。この論文を読んでなければいつまでも気づかず,この壁は乗り越えられなかったかもしれません。日ごろから関連分野の論文を読んでおくことの大事さを痛感させられました。

Q4. 将来は化学とどう関わっていきたいですか?

どのように,と問われると明確になっていないのが正直なところですが,できれば将来,超分子化学の研究者になれればと思っています。また私の研究は,疎水性分子の水溶化だけでなく,その分子の機能を高めることも期待できるため,より発展させたいと考えています。水に溶かす疎水性分子のバリエーションに乏しいのが今の悩みですので,ホスト(水溶化剤)もゲスト(疎水性分子)も自分で分子設計していくフェーズに来ているのかなと感じています。
もう一点,化学を好きであり続けたいと思っています。実験が上手くいかない,先生方との議論についていけない,伝えたいことが伝わらない…などと自分の一研究者としての素質を疑いたくなるような場面も多々あり,そのたびに落ち込むこともありました。それでも,化学が好きだからこそここまで続けられたんだと思います。嫌いになる方が難しい気もしますが,「化学が好き」という気持ちは,私にとってのお守りのようなものです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

この研究を進めるなかでとにかく感じるのは,当たり前のことではありますが,研究は私一人だけでは絶対に成り立たないということです。先生の一言が無ければ,この結論には至っていませんし,他の先生方からのアドバイスが無ければ,キレイに論文としてまとめることもできませんでした。一人で試行錯誤するよりも,先生方と密に議論し合い,新たな考え方・見方を吸収していくことの方が自身の成長につながるのだと思います。私もこれを実践してこれからも精進していきます。

最後になりましたが,本研究を遂行するにあたってご指導を賜りました池田篤志教授,杉川幸太助教,河﨑陸助教,共同研究でお世話になりました黒田章夫教授,舟橋久景准教授にこの場をお借りして厚く御礼申し上げます。
また,私たちの研究にスポットを当ててくださったChem-Stationスタッフの皆様にも深く感謝申し上げます。

研究者の略歴

名前:日野 彰大(HINO Shodai)
所属:
広島大学大学院 工学研究科 応用化学専攻 博士後期課程3年
有機超分子化学研究室

研究テーマ:
多糖によって水溶化された疎水性分子を用いた機能性材料の開発

経歴:
2006年4月-2009年3月 私立 西南学院高等学校
2009年4月-2013年3月 同志社大学 理工学部 機能分子・生命化学科 (分子生命化学研究室)
2013年4月-2015年3月 奈良先端科学技術大学院大学 物質創成科学研究科 物質創成科学専攻 博士前期課程 (バイオミメティック科学研究室)
2015年4月-2017年10月 横浜ゴム株式会社 勤務
2018年4月-現在 広島大学大学院 工学研究科 応用化学専攻 博士後期課程 (有機超分子化学研究室)

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第7回HOPEミーティング 参加者募集!!
  2. 茨城の女子高生が快挙!
  3. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の…
  4. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  5. ニッケル-可視光レドックス協働触媒系によるC(sp3)-Hチオカ…
  6. 二刀流のホスフィン触媒によるアトロプ選択的合成法
  7. セブンシスターズについて② ~世を統べる資源会社~
  8. システインの位置選択的修飾を実現する「π-クランプ法」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 浦野 泰照 Yasuteru Urano
  2. フェントン反応 Fenton Reaction
  3. ソニー、新型リチウムイオン充電池「Nexelion」発売
  4. ペプチド模倣体としてのオキセタニルアミノ酸
  5. ひどい論文を書く技術?
  6. だれが原子を見たか【夏休み企画: 理系学生の読書感想文】
  7. 100兆分の1秒を観察 夢の光・XFEL施設公開
  8. タミフル、化学的製造法を開発…スイス社と話し合いへ
  9. 企業研究者たちの感動の瞬間: モノづくりに賭ける夢と情熱
  10. 第五回 超分子デバイスの開発 – J. Fraser Stoddart教授

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第102回―「有機薄膜エレクトロニクスと太陽電池の研究」Lynn Loo教授

第102回の海外化学者インタビューは、Lynn Loo教授です。プリンストン大学 化学工学科に所属し…

化学系必見!お土産・グッズ・アイテム特集

bergです。今回は化学系や材料系の学生さんや研究者の方々がつい手に取りたくなりそうなグッズなどを筆…

危険物取扱者:記事まとめ

世の中には様々な化学系の資格があり、化学系企業で働いていると資格を取る必要に迫られる機会があります。…

化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門のシリーズも3回目を迎えました。前回は電子回路を大き…

第101回―「高分子ナノ構造の精密合成」Rachel O’Reilly教授

第101回の海外化学者インタビューは、レイチェル・オライリー教授です。ケンブリッジ大学化学科に所属(…

大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】

アメリカでの PhD 課程の1年目には、多くの大学院の場合, 研究だけでなく、講義の受講やTAの義務…

島津製作所 創業記念資料館

島津製作所の創業から現在に至るまでの歴史を示す資料館で、数々の発明品が展示されている。第10回化学遺…

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

Chem-Station Twitter

PAGE TOP