[スポンサーリンク]

化学者のつぶやき

シス優先的プリンス反応でsemisynthesis!abeo-ステロイド類の半合成

[スポンサーリンク]

シクロデセノンのシス優先的渡環プリンス反応を見いだし、abeoステロイドbufospirostenin Aおよびophiopogonol Aを合成した。シクロデセノンの立体配座を速度論的に制御したことが鍵である。

シス優先的渡環プリンス反応を用いたabeo-ステロイド骨格の構築

5/7ヒドロアズレノールは多くの生物活性テルペノイドに含まれる重要骨格である[1]。この5/7ヒドロアズレノール骨格を構築する手法として、シクロデセノンの渡環プリンス反応が利用されてきた[2]。本反応では、C5–C6結合とC1–C10結合が同一平面状にある平行型立体配座ではなく、エネルギー的に不安定な交差型立体配座を経由し、高ジアステレオ選択的にトランス体が生成する(図1A)[3]。これは、平行型立体配座を経る環化のエネルギー障壁が高く、Curtin–Hammett則に従って優先的にトランス体を与えるためだと考えられている[3]。実際に、これまでシス選択的プリンス反応の報告例はない。

今回上海有機化学研究所のGui、浙江大学のHongらはステロイド骨格に含まれるシクロデセノン骨格のシス優先的プリンス反応を初めて発見した。また、計算化学的手法により推定反応経路を提唱し、本反応がCurtin–Hammett則に従わないことを示した。さらに、本反応を鍵工程としたabeo-ステロイドbufospirostenin A(4)およびophiopogonol A(5)の半合成を達成した。

図1. ジアステレオ選択的渡環プリンス環化反応

 

“Syntheses of Bufospirostenin A and Ophiopogonol A by a Conformation-Controlled Transannular Prins Cyclization”
Yang, P.; Li, Y.; Tian, H.; Qian, G.; Wang, Y.; Hong, X.; Gui, J. J. Am. Chem. Soc. 2022, 144, 17769–17775.
DOI: 10.1021/jacs.2c07944

論文著者の紹介

研究者:Jinghan Gui (桂敬汉, 研究室HP)

研究者の経歴:

2003–2007 B.Sc., Anhui Normal University, China (Prof. Y. Hu)
2007–2012 Ph.D., Shanghai Institute of Organic Chemistry, China (Prof. W. Tian)
2012–2013 Research Associate, Shanghai Institute of Organic Chemistry, China
2013–2016 Postdoc, The Scripps Research Institute, USA (Prof. P. S. Baran)
2016–                           Professor, Shanghai Institute of Organic Chemistry, China
研究内容:天然物の全合成、C–CおよびC–X(ヘテロ原子)結合形成反応の開発

 

研究者:Xin Hong (洪鑫)

研究者の経歴:

2010–2014 Ph.D., University of California, Los Angeles, USA (Prof. K. N. Houk)
2014–2015 Postdoc, University of California, Los Angeles, USA
2015–2016 Postdoc, Stanford University, USA (Prof. J. K. Nørskov)
2016–                           Assistant Professor, Zhejiang University, China
研究内容:物理有機化学, 理論有機化学, 反応機構解明

 

論文の概要

市販品であるジオスゲニンアセテート(6)の向山水和の後、スピロケタールをラクトンへ変換し、7を合成した。続いて、三級アルコール7のスアレス開裂により、E体のシクロデセノン8を選択的に得た。その後、8に–78 °CでBBr3と炭酸セシウムを作用させることで、渡環プリンス反応が進行し、シス体のヒドロアズレノール骨格の構築に成功した。得られた9の脱水、位置選択的かつジアステレオ選択的向山水和、スピロケタール形成により4の半合成を達成した。なお、類似の合成経路で5の半合成も達成した。

上述のヒドロアズレノール形成反応では、反応条件((i)Me2AlCl/0 °C (ii)BBr3/–78 °C)に依存してトランス体およびシス体が得られる。この立体選択性発現の理由を解明するため、反応経路をDFT計算により解析した(図2B)。計算結果から、シス体は渡環プリンス反応によって、トランス体はカルボニルエン反応(条件i)もしくは[2+2]環化反応(条件ii)を経て生成することが示唆された。(i)の条件では、渡環プリンス反応(TS2)よりも、コンフォマー間の異性化(TS3)やカルボニルエン反応(TS5)の活性化エネルギーが低いため、Curtin–Hammett則に従ってトランス体10が優先的に生成したと推察された。一方で、強いルイス酸であるBBr3を用いる(ii)の条件では、INT8からINT12への異性化が最もエネルギー障壁が高く、より安定なコンフォマーからのプリンス反応が進行し、シス体が生成したと考えられる。各素反応の詳細は本文を参照されたい(注)。

図2. (A) bufospirostenin Aの合成経路 (B) (i)Me2AlClおよび(ii)BBr3を用いた場合の9と10の自由エネルギーの計算値 (kcal/mol)

 

以上、シクロデセノン骨格のシス優先的プリンス反応が見いだされ、bufospirostenin Aおよびophiopogonol Aの半合成が達成された。本研究は巧みな中員環の立体制御により渡環プリンス反応の有用性を拡げ、天然物合成への応用を可能にしたと言える。

(注) (ii)の反応条件では塩基としてCs2CO3が用いられている。難易度は高いが、Cs2CO3も含めたDFT計算結果にも興味がもたれる。

参考文献

  1. For selected examples, see: (a) Brady, S. F.; Singh, M. P.; Janso, J. E.; Clardy, J. Guanacastepene, a Fungal-Derived Diterpene Antibiotic with a New Carbon Skeleton. J. Am. Chem. Soc. 2000, 122, 2116–2117. DOI: 10.1021/ja993835m (b) Chicca, A.; Tebano, M.; Adinolfi, B.; Ertugrul, K.; Flamini, G.; Nieri, P. Anti-proliferative Activity of Aguerin B and a New Rare Nor-guaianolide Lactone Isolated from the Aerial Parts of Centaurea Deflexa. Eur. J. Med. Chem. 2011, 46, 3066–3070. DOI: 10.1016/j.ejmech.2011.03.011 (c) Liu, Y.; Ma, J.; Zhao, Q.; Liao, C.; Ding, L.; Chen, L.; Zhao, F.; Qiu, F. Guaiane-Type Sesquiterpenes from Curcuma phaeocaulis and Their Inhibitory Effects on Nitric Oxide Production. J. Nat. Prod. 2013, 76, 1150–1156. DOI: 10.1021/np400202f (d) Wu, Z.; Zhao, S.; Fash, D. M.; Li, Z.; Chain, W. J.; Beutler, J. A. Englerins: A Comprehensive Review. J. Nat. Prod. 2017, 80, 771–781. DOI: 10.1021/acs.jnatprod.6b01167 (e) Wu, J.; Xi, Y.; Li, G.; Zheng, Y.; Wang, Z.; Wang, J.; Fang, C.; Sun, Z.; Hu, L.; Jiang, W.; Dai, L.; Dong, J.; Qiu, P.; Zhao, M.; Yan, P. Hydroazulene Diterpenes from a Dictyota Brown Alga and Their Antioxidant and Neuroprotective Effects Against Cerebral Ischemia–Reperfusion Injury. J. Nat. Prod. 2021, 84, 1306–1315. DOI: 10.1021/acs.jnatprod.1c00027 (f) Zhang, X.; Liu, Y.; Deng, J.; Xia, J.; Zhang, Q.; Chen, X.; Liu, R.; Gao, Y.; Gao, J.-M. Structurally Diverse Sesquiterpenoid Glycoside Esters from Pittosporum qinlingense with Anti-neuroinflammatory Activity. J. Nat. Prod. 2022, 85, 115–126. DOI: 10.1021/acs.jnatprod.1c00544
  2. For selected examples, see: (a) Mihailovic, M. L.; Lorenc, L.; Forsěk, J.; Nesǒvic,́ H.; Snatzke, G.; Trsǩa, P. Configurational and Conformational Studies of Some B-homo-A-nor-steroids. Tetrahedron 1970, 26, 557–573. DOI: 1016/S0040-4020(01)97849-4 (b) Fuhrer, H.; Lorenc, L.; Pavlovic,́ V.; Rihs, G.; Rist, G.; Kalvoda, J.; Mihailovic,́ M. L. Conformations of the 10-membered Ring in 5, 10-Secosteroids. II. (E)-3α-Acetoxy-5,10-seco-1(10)-cholesten-5-one and (E)-5,10-seco-1(10)-cholestene-3,5-dione. Helv. Chim. Acta, 1979, 62, 1770–1784. DOI: 10.1002/hlca.19790620610 (c) Afonso, M. M.; Mansilla, H.; Palenzuela, J. A.; Galindo, A. Acid Cyclization of 5-Ketogermacren-6,12-olides. A Reactivity and Conformational Study. Tetrahedron, 1996, 52, 11827–11840. DOI: 10.1016/0040-4020(96)00674-6 (d) Riehl, P. S.; Nasrallah, D. J.; Schindler, C. S. Catalytic, Transannular Carbonyl-Olefin Metathesis Reactions. Chem. Sci. 2019, 10, 10267–10274. DOI: 10.1039/C9SC03716K
  3. Fan, W.; White, J. B. Activation of the Ketone of 5-Cyclodecenones towards Thermal Transannular Cyclization to Give trans-Hydroazulenols. Tetrahedron Lett. 1997, 38, 7155–7158. DOI: 1016/S0040-4039(97)01760-7

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 柴田科学 合成反応装置ケミストプラザ CP-400型をデモしてみ…
  2. iPhoneやiPadで化学!「デジタル化学辞典」
  3. アステラス病態代謝研究会 2019年度助成募集
  4. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~…
  5. グリコシル化反応を楽にする1位選択的”保護̶…
  6. LSD1阻害をトリガーとした二重機能型抗がん剤の開発
  7. 第18回次世代を担う有機化学シンポジウム
  8. トシルヒドラゾンとボロン酸の還元的カップリング反応とその応用展開…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. クラーク・スティル W. Clark Still
  2. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  3. ドイツのマックス・プランク研究所をご存じですか
  4. 2016年1月の注目化学書籍
  5. TFEDMA
  6. ヘリウムガスのはなし
  7. 2005年5月分の気になる化学関連ニュース投票結果
  8. 混合試料から各化合物のスペクトルを得る(DOSY法)
  9. 第150回―「触媒反応機構を解明する計算化学」Jeremy Harvey教授
  10. 徹底比較 特許と論文の違い ~その他編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

紅麹問題に進展。混入物質を「プベルル酸」と特定か!?

紅麹問題に進展がありました。各新聞社が下記のように報道しています。小林製薬(大阪市)がつ…

【十全化学】新卒採用情報

当社は行動指針の一つとして、「会社と仕事を通じて自己成長を遂げ、仕事を愉しもう!…

【十全化学】核酸医薬のGMP製造への挑戦

「核酸医薬」と聞いて、真っ先に思い起こすのは、COVID-19に対するmRNAワ…

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP