[スポンサーリンク]

化学者のつぶやき

シス優先的プリンス反応でsemisynthesis!abeo-ステロイド類の半合成

[スポンサーリンク]

シクロデセノンのシス優先的渡環プリンス反応を見いだし、abeoステロイドbufospirostenin Aおよびophiopogonol Aを合成した。シクロデセノンの立体配座を速度論的に制御したことが鍵である。

シス優先的渡環プリンス反応を用いたabeo-ステロイド骨格の構築

5/7ヒドロアズレノールは多くの生物活性テルペノイドに含まれる重要骨格である[1]。この5/7ヒドロアズレノール骨格を構築する手法として、シクロデセノンの渡環プリンス反応が利用されてきた[2]。本反応では、C5–C6結合とC1–C10結合が同一平面状にある平行型立体配座ではなく、エネルギー的に不安定な交差型立体配座を経由し、高ジアステレオ選択的にトランス体が生成する(図1A)[3]。これは、平行型立体配座を経る環化のエネルギー障壁が高く、Curtin–Hammett則に従って優先的にトランス体を与えるためだと考えられている[3]。実際に、これまでシス選択的プリンス反応の報告例はない。

今回上海有機化学研究所のGui、浙江大学のHongらはステロイド骨格に含まれるシクロデセノン骨格のシス優先的プリンス反応を初めて発見した。また、計算化学的手法により推定反応経路を提唱し、本反応がCurtin–Hammett則に従わないことを示した。さらに、本反応を鍵工程としたabeo-ステロイドbufospirostenin A(4)およびophiopogonol A(5)の半合成を達成した。

図1. ジアステレオ選択的渡環プリンス環化反応

 

“Syntheses of Bufospirostenin A and Ophiopogonol A by a Conformation-Controlled Transannular Prins Cyclization”
Yang, P.; Li, Y.; Tian, H.; Qian, G.; Wang, Y.; Hong, X.; Gui, J. J. Am. Chem. Soc. 2022, 144, 17769–17775.
DOI: 10.1021/jacs.2c07944

論文著者の紹介

研究者:Jinghan Gui (桂敬汉, 研究室HP)

研究者の経歴:

2003–2007 B.Sc., Anhui Normal University, China (Prof. Y. Hu)
2007–2012 Ph.D., Shanghai Institute of Organic Chemistry, China (Prof. W. Tian)
2012–2013 Research Associate, Shanghai Institute of Organic Chemistry, China
2013–2016 Postdoc, The Scripps Research Institute, USA (Prof. P. S. Baran)
2016–                           Professor, Shanghai Institute of Organic Chemistry, China
研究内容:天然物の全合成、C–CおよびC–X(ヘテロ原子)結合形成反応の開発

 

研究者:Xin Hong (洪鑫)

研究者の経歴:

2010–2014 Ph.D., University of California, Los Angeles, USA (Prof. K. N. Houk)
2014–2015 Postdoc, University of California, Los Angeles, USA
2015–2016 Postdoc, Stanford University, USA (Prof. J. K. Nørskov)
2016–                           Assistant Professor, Zhejiang University, China
研究内容:物理有機化学, 理論有機化学, 反応機構解明

 

論文の概要

市販品であるジオスゲニンアセテート(6)の向山水和の後、スピロケタールをラクトンへ変換し、7を合成した。続いて、三級アルコール7のスアレス開裂により、E体のシクロデセノン8を選択的に得た。その後、8に–78 °CでBBr3と炭酸セシウムを作用させることで、渡環プリンス反応が進行し、シス体のヒドロアズレノール骨格の構築に成功した。得られた9の脱水、位置選択的かつジアステレオ選択的向山水和、スピロケタール形成により4の半合成を達成した。なお、類似の合成経路で5の半合成も達成した。

上述のヒドロアズレノール形成反応では、反応条件((i)Me2AlCl/0 °C (ii)BBr3/–78 °C)に依存してトランス体およびシス体が得られる。この立体選択性発現の理由を解明するため、反応経路をDFT計算により解析した(図2B)。計算結果から、シス体は渡環プリンス反応によって、トランス体はカルボニルエン反応(条件i)もしくは[2+2]環化反応(条件ii)を経て生成することが示唆された。(i)の条件では、渡環プリンス反応(TS2)よりも、コンフォマー間の異性化(TS3)やカルボニルエン反応(TS5)の活性化エネルギーが低いため、Curtin–Hammett則に従ってトランス体10が優先的に生成したと推察された。一方で、強いルイス酸であるBBr3を用いる(ii)の条件では、INT8からINT12への異性化が最もエネルギー障壁が高く、より安定なコンフォマーからのプリンス反応が進行し、シス体が生成したと考えられる。各素反応の詳細は本文を参照されたい(注)。

図2. (A) bufospirostenin Aの合成経路 (B) (i)Me2AlClおよび(ii)BBr3を用いた場合の9と10の自由エネルギーの計算値 (kcal/mol)

 

以上、シクロデセノン骨格のシス優先的プリンス反応が見いだされ、bufospirostenin Aおよびophiopogonol Aの半合成が達成された。本研究は巧みな中員環の立体制御により渡環プリンス反応の有用性を拡げ、天然物合成への応用を可能にしたと言える。

(注) (ii)の反応条件では塩基としてCs2CO3が用いられている。難易度は高いが、Cs2CO3も含めたDFT計算結果にも興味がもたれる。

参考文献

  1. For selected examples, see: (a) Brady, S. F.; Singh, M. P.; Janso, J. E.; Clardy, J. Guanacastepene, a Fungal-Derived Diterpene Antibiotic with a New Carbon Skeleton. J. Am. Chem. Soc. 2000, 122, 2116–2117. DOI: 10.1021/ja993835m (b) Chicca, A.; Tebano, M.; Adinolfi, B.; Ertugrul, K.; Flamini, G.; Nieri, P. Anti-proliferative Activity of Aguerin B and a New Rare Nor-guaianolide Lactone Isolated from the Aerial Parts of Centaurea Deflexa. Eur. J. Med. Chem. 2011, 46, 3066–3070. DOI: 10.1016/j.ejmech.2011.03.011 (c) Liu, Y.; Ma, J.; Zhao, Q.; Liao, C.; Ding, L.; Chen, L.; Zhao, F.; Qiu, F. Guaiane-Type Sesquiterpenes from Curcuma phaeocaulis and Their Inhibitory Effects on Nitric Oxide Production. J. Nat. Prod. 2013, 76, 1150–1156. DOI: 10.1021/np400202f (d) Wu, Z.; Zhao, S.; Fash, D. M.; Li, Z.; Chain, W. J.; Beutler, J. A. Englerins: A Comprehensive Review. J. Nat. Prod. 2017, 80, 771–781. DOI: 10.1021/acs.jnatprod.6b01167 (e) Wu, J.; Xi, Y.; Li, G.; Zheng, Y.; Wang, Z.; Wang, J.; Fang, C.; Sun, Z.; Hu, L.; Jiang, W.; Dai, L.; Dong, J.; Qiu, P.; Zhao, M.; Yan, P. Hydroazulene Diterpenes from a Dictyota Brown Alga and Their Antioxidant and Neuroprotective Effects Against Cerebral Ischemia–Reperfusion Injury. J. Nat. Prod. 2021, 84, 1306–1315. DOI: 10.1021/acs.jnatprod.1c00027 (f) Zhang, X.; Liu, Y.; Deng, J.; Xia, J.; Zhang, Q.; Chen, X.; Liu, R.; Gao, Y.; Gao, J.-M. Structurally Diverse Sesquiterpenoid Glycoside Esters from Pittosporum qinlingense with Anti-neuroinflammatory Activity. J. Nat. Prod. 2022, 85, 115–126. DOI: 10.1021/acs.jnatprod.1c00544
  2. For selected examples, see: (a) Mihailovic, M. L.; Lorenc, L.; Forsěk, J.; Nesǒvic,́ H.; Snatzke, G.; Trsǩa, P. Configurational and Conformational Studies of Some B-homo-A-nor-steroids. Tetrahedron 1970, 26, 557–573. DOI: 1016/S0040-4020(01)97849-4 (b) Fuhrer, H.; Lorenc, L.; Pavlovic,́ V.; Rihs, G.; Rist, G.; Kalvoda, J.; Mihailovic,́ M. L. Conformations of the 10-membered Ring in 5, 10-Secosteroids. II. (E)-3α-Acetoxy-5,10-seco-1(10)-cholesten-5-one and (E)-5,10-seco-1(10)-cholestene-3,5-dione. Helv. Chim. Acta, 1979, 62, 1770–1784. DOI: 10.1002/hlca.19790620610 (c) Afonso, M. M.; Mansilla, H.; Palenzuela, J. A.; Galindo, A. Acid Cyclization of 5-Ketogermacren-6,12-olides. A Reactivity and Conformational Study. Tetrahedron, 1996, 52, 11827–11840. DOI: 10.1016/0040-4020(96)00674-6 (d) Riehl, P. S.; Nasrallah, D. J.; Schindler, C. S. Catalytic, Transannular Carbonyl-Olefin Metathesis Reactions. Chem. Sci. 2019, 10, 10267–10274. DOI: 10.1039/C9SC03716K
  3. Fan, W.; White, J. B. Activation of the Ketone of 5-Cyclodecenones towards Thermal Transannular Cyclization to Give trans-Hydroazulenols. Tetrahedron Lett. 1997, 38, 7155–7158. DOI: 1016/S0040-4039(97)01760-7
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究…
  2. 化学素人の化学読本
  3. ケムステイブニングミキサー2019に参加しよう!
  4. 就職か進学かの分かれ道
  5. ポンコツ博士の海外奮闘録⑬ ~博士,コロナにかかる~
  6. ケムステ版・ノーベル化学賞候補者リスト【2021年版】
  7. 酸化反応条件で抗酸化物質を効率的につくる
  8. MI×データ科学|オンライン|コース

注目情報

ピックアップ記事

  1. 米ファイザーの第2・四半期は特別利益で純利益が増加、売上高は+1%
  2. 数々の日本企業がIntel 2023 EPIC Supplier Program Awardを受賞
  3. 酵母還元 Reduction with Yeast
  4. 化学は切手と縁が深い
  5. クラウス・ビーマン Klaus Biemann
  6. 「研究を諦めたくない」―50代研究者が選んだセカンドステージ
  7. ヨアヒム・フランク Joachim Frank
  8. 有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン
  9. 赤色発光する希土類錯体で植物成長促進の実証に成功
  10. 旭化成の今期、営業利益15%増の1250億円に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP