[スポンサーリンク]

化学者のつぶやき

ギ酸ナトリウムでconPETを進化!

[スポンサーリンク]

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに適用できる。還元剤として用いたギ酸ナトリウムが本手法の鍵である。

ギ酸ナトリウムを用いた新たな光触媒系の開発

アリールラジカルは多様な変換が可能な有用中間体である。アリールラジカルの生成法の一つに、可視光レドックス触媒を用いたハロゲン化アリールの還元が知られる(図 1A)。しかし、強力な還元力が必要であるため、塩化アリールをアリールラジカルに変換する例はいまだに少ない。
最近、Königらによって連続光誘起電子移動(consecutive Photoinduced Electron Transfer: conPET)と呼ばれる手法が報告された[1]。この手法は、光照射により励起された可視光レドックス触媒(PC*)と還元剤との一電子移動(Single Electron Transfer: SET)により生じたラジカルアニオン(PC•–)が、再び励起されることで、強力な還元力をもつ光触媒(PC•–*)を生成する方法である(図 1B)。しかし、conPETを含む可視光レドックス触媒反応では、電子豊富な塩化アリールの官能基変換は水素化とホウ素化に限られていた(図 1C)[2–4]。一方で最近、電気化学的に還元した可視光レドックス触媒(PC•–)を励起することで、励起したラジカルアニオン(PC•–*)を生成する方法が相次いで報告された(図 1B)[6–8]。この手法によって、電子豊富な塩化アリールの水素化・ホウ素化以外の官能基変換が達成されたが、電解装置が必要であった。
今回、本論文の著者であるWickensらはconPETにおける還元剤としてギ酸ナトリウムを、可視光レドックス触媒として4-DPAIPNを用いることで、電子豊富な塩化アリールを基質とする種々のラジカルカップリングを可能にした(図1D)。

図1. (A) ハロゲン化アリールの還元によるアリールラジカルの生成法 (B) conPET と電気化学的還元/光励起 (C) 塩化アリールの官能基変換(D) 今回の研究

 

Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides
Chmiel, A. F.; Williams, O. P.; Chernowsky, C. P.; Yeung, C. S.; Wickens, Z. K. J. Am. Chem. Soc. 2021, 143, 10882–10889.
DOI: 10.1021/jacs.1c05988

研究者:Zachary K. Wickens
研究者の経歴:
2006–2010                  B.A., Macalester College, USA
2010–2015                  Ph.D., California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015–2018                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2018–                             Assistant Professor, University of Wisconsin–Madison, USA
研究内容:電気化学、光化学

研究者:Charles S. Yeung
研究者の経歴:2002–2006                  BSc, The University of British Columbia, Canada
2006–2011                  Ph.D., University of Toronto, Canada (Prof. Vy M. Dong)
2012–2015                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2015–                             Medicinal Chemist, Merck, USA
研究内容:メディシナルケミストリー、触媒反応の開発

論文の概要

著者らはまず、1aの脱ハロゲン化反応に対する光触媒と還元剤を検討した(図 2A)。その結果、光照射下(405 nm)、1aにシクロヘキシルチオール、4-DPAIPN、ギ酸ナトリウムを反応させると、収率70%で2aを与えることを見いだした。次に基質適用範囲を調査した。本手法は電子供与基をもつ還元されにくい塩化アリール1bにも適用可能で、収率92%で2bが得られた。また、塩化アリールの代わりにアニリニウム塩(1c)やアリールホスファート(1d)を出発物質に用いても、高収率で還元体を得ることができた。
続いて、本手法を三種類のラジカルカップリング反応に適用した(図 2B)。電子豊富な塩化アリール(1e and 1g)に加え、エステル(1f)やカーバマート(1h)を用いても問題なくホスホニル化、ホウ素化反応が進行し対応する2を与えた。さらに、アルケンのヒドロアリール化(1i1k)にも適用できた。
著者らは次のように反応機構を推定した(図 2C)。まず、光照射によりPCと二分子のギ酸ナトリウムからPC•–Aが生成し反応が開始する。PC•–は光照射下で塩化アリールと反応してアリールラジカルを生成し、PCが再生する。Aは(i)PCPC•–へ還元する、(ii)塩化アリールをアリールラジカルへ直接還元する、という二つの役割を担うと考えられている。生成したアリールラジカルは種々のラジカルカップリング反応を経て、所望の化合物を与える。

図2. (A) 基質適用範囲(水素化) (B) 基質適用範囲(ラジカルカップリング反応) (C) 推定反応機構

 

以上、著者らはconPETに4-DPAIPNとギ酸ナトリウムを利用することで、電子豊富な塩化アリールの官能基変換に新たな選択肢を与えた。

参考文献

  1. Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Reduction of Aryl Halides by Consecutive Visible Light-Induced Electron Transfer Processes. Science2014, 346, 725–728. DOI: 1126/science.1258232
  2. Jin, S.; Dang, H. T.; Haug, G. C.; He, R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. J. Am. Chem. Soc. 2020, 142, 1603–1613. DOI: 10.1021/jacs.9b12519
  3. MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A. Discovery and Characterization of an Acridine Radical Photoreductant. Nature 2020, 580, 76–80. DOI: 1038/s41586-020-2131-1
  4. Zhang, L.; Jiao, L. Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J. Am. Chem. Soc. 2019, 141, 9124–9128. DOI:10.1021/jacs.9b00917
  5. Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. J. Am. Chem. Soc. 2020, 142, 2093–2099. DOI: 10.1021/jacs.9b12328
  6. Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. Reductive Electrophotocatalysis: Merging Electricity and Light to Achieve Extreme Reduction Potentials. J. Am. Chem. Soc. 2020, 142, 2087–2092. DOI: 10.1021/jacs.9b10678
  7. Barham, J. P.; König, B. Synthetic Photoelectrochemistry. Angew. Chem., Int. Ed. 2020, 59, 11732–11747. DOI: 1002/anie.201913767
  8. Kvasovs, N.; Gevorgyan, V. Contemporary Methods for Generation of Aryl Radicals. Chem. Soc. Rev. 2021, 50, 2244–2259. DOI: 1039/d0cs00589d
  9. 本論文と同時期に類似の触媒系が相次いで報告された。(a) 4CzIPNとギ酸ナトリウムを利用した塩化アリールのラジカルカップリングHendy, C. M.; Smith, G. C.; Xu, Z.; Lian, T.; Jui, N. T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2). J. Am. Chem. Soc. 2021, 143, 24, 8987–8992. DOI: 10.1021/jacs.1c04427 (b) アリールアミン光触媒とギ酸ナトリウムを利用した塩化アリールの還元的重水素 Li, Y.; Ye, Z.; Lin, Y.-M.; Liu, Y.; Zhang, Y.; Gong, L. Organophotocatalytic Selective Deuterodehalogenation of Aryl or Alkyl Chlorides. Nat. Commun. 2021, 12, 2894. DOI: 10.1038/s41467-021-23255-0 (c) 3CzEPAIPNとシュウ酸ナトリウムを利用した塩化アリールのラジカルカップリング Xu, J,; Cao, J.; Wu, X.; Wang, H.; Yang, X.; Tang, X.; Toh, R.W.; Zhou, R.; Yeow, E.K.L.; Wu, J. Unveiling Extreme Photoreduction Potentials of Donor−Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides. J. Am. Chem. Soc. 2021, 143, 13266−13273. DOI: 10.1021/jacs.1c05994
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  2. ナイトレン
  3. 不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応
  4. オゾンと光だけでアジピン酸をつくる
  5. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議…
  6. 電流励起による“選択的”三重項励起状態の生成!
  7. ベンゼン環をつないで 8 員環をつくる! 【夢の三次元ナノカーボ…
  8. 光化学と私たちの生活そして未来技術へ

注目情報

ピックアップ記事

  1. 武田オレフィン合成 Takeda Olefination
  2. ケイ素置換gem-二クロムメタン錯体の反応性と触媒作用
  3. 第33回ケムステVシンポ「研究DXとラボラトリーオートメーション」を開催します!
  4. ムスカリン muscarine
  5. テトラセノマイシン類の全合成
  6. REACH/RoHS関連法案の最新動向【終了】
  7. 視覚を制御する物質からヒントを得た異性化反応
  8. スケールアップのポイント・考え方とトラブル回避【終了】
  9. 天然物化学
  10. 交響曲第6番「炭素物語」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP