[スポンサーリンク]

化学者のつぶやき

ギ酸ナトリウムでconPETを進化!

[スポンサーリンク]

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに適用できる。還元剤として用いたギ酸ナトリウムが本手法の鍵である。

ギ酸ナトリウムを用いた新たな光触媒系の開発

アリールラジカルは多様な変換が可能な有用中間体である。アリールラジカルの生成法の一つに、可視光レドックス触媒を用いたハロゲン化アリールの還元が知られる(図 1A)。しかし、強力な還元力が必要であるため、塩化アリールをアリールラジカルに変換する例はいまだに少ない。
最近、Königらによって連続光誘起電子移動(consecutive Photoinduced Electron Transfer: conPET)と呼ばれる手法が報告された[1]。この手法は、光照射により励起された可視光レドックス触媒(PC*)と還元剤との一電子移動(Single Electron Transfer: SET)により生じたラジカルアニオン(PC•–)が、再び励起されることで、強力な還元力をもつ光触媒(PC•–*)を生成する方法である(図 1B)。しかし、conPETを含む可視光レドックス触媒反応では、電子豊富な塩化アリールの官能基変換は水素化とホウ素化に限られていた(図 1C)[2–4]。一方で最近、電気化学的に還元した可視光レドックス触媒(PC•–)を励起することで、励起したラジカルアニオン(PC•–*)を生成する方法が相次いで報告された(図 1B)[6–8]。この手法によって、電子豊富な塩化アリールの水素化・ホウ素化以外の官能基変換が達成されたが、電解装置が必要であった。
今回、本論文の著者であるWickensらはconPETにおける還元剤としてギ酸ナトリウムを、可視光レドックス触媒として4-DPAIPNを用いることで、電子豊富な塩化アリールを基質とする種々のラジカルカップリングを可能にした(図1D)。

図1. (A) ハロゲン化アリールの還元によるアリールラジカルの生成法 (B) conPET と電気化学的還元/光励起 (C) 塩化アリールの官能基変換(D) 今回の研究

 

Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides
Chmiel, A. F.; Williams, O. P.; Chernowsky, C. P.; Yeung, C. S.; Wickens, Z. K. J. Am. Chem. Soc. 2021, 143, 10882–10889.
DOI: 10.1021/jacs.1c05988

研究者:Zachary K. Wickens
研究者の経歴:
2006–2010                  B.A., Macalester College, USA
2010–2015                  Ph.D., California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015–2018                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2018–                             Assistant Professor, University of Wisconsin–Madison, USA
研究内容:電気化学、光化学

研究者:Charles S. Yeung
研究者の経歴:2002–2006                  BSc, The University of British Columbia, Canada
2006–2011                  Ph.D., University of Toronto, Canada (Prof. Vy M. Dong)
2012–2015                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2015–                             Medicinal Chemist, Merck, USA
研究内容:メディシナルケミストリー、触媒反応の開発

論文の概要

著者らはまず、1aの脱ハロゲン化反応に対する光触媒と還元剤を検討した(図 2A)。その結果、光照射下(405 nm)、1aにシクロヘキシルチオール、4-DPAIPN、ギ酸ナトリウムを反応させると、収率70%で2aを与えることを見いだした。次に基質適用範囲を調査した。本手法は電子供与基をもつ還元されにくい塩化アリール1bにも適用可能で、収率92%で2bが得られた。また、塩化アリールの代わりにアニリニウム塩(1c)やアリールホスファート(1d)を出発物質に用いても、高収率で還元体を得ることができた。
続いて、本手法を三種類のラジカルカップリング反応に適用した(図 2B)。電子豊富な塩化アリール(1e and 1g)に加え、エステル(1f)やカーバマート(1h)を用いても問題なくホスホニル化、ホウ素化反応が進行し対応する2を与えた。さらに、アルケンのヒドロアリール化(1i1k)にも適用できた。
著者らは次のように反応機構を推定した(図 2C)。まず、光照射によりPCと二分子のギ酸ナトリウムからPC•–Aが生成し反応が開始する。PC•–は光照射下で塩化アリールと反応してアリールラジカルを生成し、PCが再生する。Aは(i)PCPC•–へ還元する、(ii)塩化アリールをアリールラジカルへ直接還元する、という二つの役割を担うと考えられている。生成したアリールラジカルは種々のラジカルカップリング反応を経て、所望の化合物を与える。

図2. (A) 基質適用範囲(水素化) (B) 基質適用範囲(ラジカルカップリング反応) (C) 推定反応機構

 

以上、著者らはconPETに4-DPAIPNとギ酸ナトリウムを利用することで、電子豊富な塩化アリールの官能基変換に新たな選択肢を与えた。

参考文献

  1. Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Reduction of Aryl Halides by Consecutive Visible Light-Induced Electron Transfer Processes. Science2014, 346, 725–728. DOI: 1126/science.1258232
  2. Jin, S.; Dang, H. T.; Haug, G. C.; He, R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. J. Am. Chem. Soc. 2020, 142, 1603–1613. DOI: 10.1021/jacs.9b12519
  3. MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A. Discovery and Characterization of an Acridine Radical Photoreductant. Nature 2020, 580, 76–80. DOI: 1038/s41586-020-2131-1
  4. Zhang, L.; Jiao, L. Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J. Am. Chem. Soc. 2019, 141, 9124–9128. DOI:10.1021/jacs.9b00917
  5. Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. J. Am. Chem. Soc. 2020, 142, 2093–2099. DOI: 10.1021/jacs.9b12328
  6. Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. Reductive Electrophotocatalysis: Merging Electricity and Light to Achieve Extreme Reduction Potentials. J. Am. Chem. Soc. 2020, 142, 2087–2092. DOI: 10.1021/jacs.9b10678
  7. Barham, J. P.; König, B. Synthetic Photoelectrochemistry. Angew. Chem., Int. Ed. 2020, 59, 11732–11747. DOI: 1002/anie.201913767
  8. Kvasovs, N.; Gevorgyan, V. Contemporary Methods for Generation of Aryl Radicals. Chem. Soc. Rev. 2021, 50, 2244–2259. DOI: 1039/d0cs00589d
  9. 本論文と同時期に類似の触媒系が相次いで報告された。(a) 4CzIPNとギ酸ナトリウムを利用した塩化アリールのラジカルカップリングHendy, C. M.; Smith, G. C.; Xu, Z.; Lian, T.; Jui, N. T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2). J. Am. Chem. Soc. 2021, 143, 24, 8987–8992. DOI: 10.1021/jacs.1c04427 (b) アリールアミン光触媒とギ酸ナトリウムを利用した塩化アリールの還元的重水素 Li, Y.; Ye, Z.; Lin, Y.-M.; Liu, Y.; Zhang, Y.; Gong, L. Organophotocatalytic Selective Deuterodehalogenation of Aryl or Alkyl Chlorides. Nat. Commun. 2021, 12, 2894. DOI: 10.1038/s41467-021-23255-0 (c) 3CzEPAIPNとシュウ酸ナトリウムを利用した塩化アリールのラジカルカップリング Xu, J,; Cao, J.; Wu, X.; Wang, H.; Yang, X.; Tang, X.; Toh, R.W.; Zhou, R.; Yeow, E.K.L.; Wu, J. Unveiling Extreme Photoreduction Potentials of Donor−Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides. J. Am. Chem. Soc. 2021, 143, 13266−13273. DOI: 10.1021/jacs.1c05994

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 学生はなんのために研究するのか? 研究でスキルアップもしませんか…
  2. 超一流誌による論文選定は恣意的なのか?
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑧(解答編…
  4. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の…
  5. 目指せ化学者墓マイラー
  6. 5-ヒドロキシトリプトファン選択的な生体共役反応
  7. 学術論文を書くときは句動詞に注意
  8. Reaction Plus:生成物と反応物から反応経路がわかる

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 世界が終わる日までビスマス
  2. ワーグナー・メーヤワイン転位 Wagner-Meerwein Rearrangement
  3. 【追悼企画】生命現象の鍵を追い求めてー坂神洋次教授
  4. 無金属、温和な条件下で多置換ピリジンを構築する
  5. ケック マクロラクトン化 Keck Macrolactonization
  6. ボールドウィン則 Baldwin’s Rule
  7. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー
  8. 3Dプリンタとシェールガスとポリ乳酸と
  9. カリカリベーコンはどうして美味しいにおいなの?
  10. 豊丘出身、元島さんCMC開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP