[スポンサーリンク]

化学者のつぶやき

抽出精製型AJIPHASE法の開発

[スポンサーリンク]

2017年、味の素社の高橋大輔らは、ペプチド液相合成法であるAJIPHASE法にさらなる改良を加え、沈殿精製の代わりに、抽出精製を用いてone-potでペプチド合成を行える手法を開発した。

“AJIPHASE: A Highly Efficient Synthetic Method for One-Pot Peptide Elongation in the Solution Phase by an Fmoc Strategy”
Takahashi, D.*; Inomata, T.; Fukui, T. Angew. Chem. Int. Ed. 2017, 56, 7803-7807. doi:10.1002/anie.201702931

問題設定

AJIPHASE法とは、ペプチドC末に長鎖アルキルアンカー分子を接続することで低極性有機溶媒中での縮合→脱保護後に極性溶媒添加による沈殿精製を可能とし、ペプチド鎖を液相で繰り返し伸長させる手法である[1-3]。手順が簡便である固相合成法のメリットと、試薬使用量が少なくてすむ液相合成法のメリットの両方を兼ね備えた特長を持つ。
以前のAJIPHASE法では、沈殿精製過程の溶媒にクロロホルムなど、環境負荷の高いハロゲン系溶媒を用いる必要があった。このため代替法として抽出精製法が検討されてきた。しかしながら伸長中のペプチド中間体の溶解度が悪い場合、抽出が不完全になる問題があり、実用的な手法にはなっていなかった。

汎用性の高い抽出精製型AJIPHASE法を開発するためには、以下の2点を解決する必要があった。

  1. 伸長中のペプチド中間体を完全に有機溶媒に溶解させる
  2. 副生成物を完全に水層に移動させ、取り除けるようにする

技術や手法の肝

著者らは本論文で上記①②の問題解決を成し遂げ、冒頭アイキャッチ画像のような改良型AJIPHASE法の開発に成功した。

問題①について

従来型AJIPHASE法では下図13のような直鎖アルキル型アンカー分子を用いていたが、長鎖ペプチドや疎水性ペプチドであれば有機溶媒に完全に溶解するものの、溶液の粘度が増すことによって抽出が不完全になる場合があった。そこで下図右に示すような新たなアンカー分子45を開発することで解決した。アンカー分子のアルキル鎖部位に枝分かれ構造を導入することで、疎水性を上げるとともに溶液粘度の上昇を防ぎ、抽出が容易になる。

問題②について

Fmoc基除去工程で生じるジベンゾフルベン(DBF)や、用いられる塩基が取り除けない場合、後続変換での副反応が懸念される。定法で用いられるピペリジンやジエチレントリアミンではDBFを完全に捕らえることができないため、有機層に多くのDBFが残ってしまう。また、酸性水溶液で洗浄した場合、ペプチドN末端がプロトン化されてエマルジョン化が引き起こされ、抽出が不完全になってしまう。そこでカルボン酸部分とチオールを併せもつ試薬(チオリンゴ酸・メルカプトプロピオン酸など)をDBFスカベンジャーとして用い、塩基性水溶液で洗浄を行なうプロトコルを確立することで解決した。

主張の有効性検証

①アンカー分子の有機溶媒への溶解性

直鎖アンカー12、分岐鎖アンカー45について、クロロホルム、酢酸エチル、シクロペンチルメチルエーテル、トルエンへの溶解性を比較したところ、45の溶解度のほうが数十倍~数千倍高いことが分かった。
さらに、アンカー14を用い、疎水性ペプチドFmoc-Val-Gly-Gly-Val-OHを抽出型AJIPHASE法でそれぞれ合成したところ、アンカー1を用いた場合は4残基目との縮合時に不溶物質が確認されたが、アンカー4を用いた場合は完全に均一な溶液のままであった。

②Fmoc脱保護における副生成物の除去

Fmocの脱保護に、DBUとMpaまたはチオリンゴ酸を用い、塩基性水溶液で洗浄したところ、DBFと塩基の付加体が容易に得られ、水層に除かれることが確認された。

③長鎖ペプチド合成への応用

10残基ペプチドであるDegarelixと、20残基ペプチドであるBivalirudinの合成を、本改良型AJIPHASE法を用いてone-potで達成している。Degarelixは収率85%・純度89%、Bivalirudinは収率73%・純度84%で得られた。また、溶媒として非ハロゲン系溶媒のシクロペンチルメチルエーテル(CPME)を用いても合成可能であり、従来の液相法の1/10の溶媒量で反応を行うことも可能であった。

 

議論すべき点

  • ハロゲン溶媒を使わずにペプチドが合成可能と論文中では述べられているが、DegarelixやBivalirudinの合成はクロロホルムを溶媒として用いて行われている。完全にハロゲン溶媒を回避することのは、収率や純度を考慮するとまだ難しいというのが実情かもしれない。

次に読むべき論文は?

  • 液相法でペプチド合成を行い抽出精製を行っている例として、フルオラス抽出型プロトコルを用いている事例がある[4]。

参考文献

  1. Takahashi, D.; Yamamoto, T. Tetrahedron Lett. 2012, 53, 1936. doi:10.1016/j.tetlet.2012.02.006
  2. Takahashi, D.; Inomata, T. J. Pept. Sci. 2012, 18, S35.
  3. Takahashi, D.; Yano, T.; Fukui, T. Org. Lett. 2012, 14, 4515. DOI: 10.1021/ol302002g
  4. Mizuno, M.; Miura, T.; Goto, K.; Hosaka, D.; Inazu, T. Chem. Commun. 2003, 972. doi: 10.1039/B300682D
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケムステイブニングミキサー2015へ参加しよう!
  2. 若手化学者に朗報!YMC研究奨励金に応募しよう!
  3. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編…
  4. 製薬会社のテレビCMがステキです
  5. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  6. 君には電子のワルツが見えるかな
  7. 未解明のテルペン類の生合成経路を理論的に明らかに
  8. 巨大ポリエーテル天然物「ギムノシン-A」の全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 根岸試薬(Cp2Zr) Negishi Reagent
  2. 緑茶成分テアニンに抗ストレス作用、太陽化学、名大が確認
  3. 錬金術博物館
  4. 金属内包フラーレンを使った分子レーダーの創製
  5. 近況報告Part V
  6. サントリー白州蒸溜所
  7. 水分解反応のしくみを観測ー人工光合成触媒開発へ前進ー
  8. 渡辺化学工業ってどんな会社?
  9. 有機ラジカルポリマー合成に有用なTEMPO型フリーラジカル
  10. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻き構造形成の仕組みを解明-

関連商品

注目情報

注目情報

最新記事

リチウム金属電池の寿命を短くしている原因を研究者が突き止める

リチウムリオンバッテリー(リチウムイオン二次電池)はPCやスマートフォンなどの電子機器に利用されてい…

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

Chem-Station Twitter

PAGE TOP