[スポンサーリンク]

化学者のつぶやき

分子で作る惑星、その名もナノサターン!

[スポンサーリンク]

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラーレン(C60)が惑星本体、アントラセンを主鎖骨格に持つ大環状分子が土星の輪を模したような分子構造を持つ、ホスト−ゲスト錯体である。

Nano-Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60
Yamamono,Y.; Tsurumaki, E.; Wakamatsu, K.; Toyota, T.*
Angew. Chem. Int. Ed. 2018, 57, Early View DOI: 10.1002/anie.201804430

本論文の概要

図1. アントラセンを主鎖骨格とする大環状分子2nの合成(土星の輪の部分の合成)

 

著者の豊田先生らは、アントラセンにこだわった特徴ある分子を多数報告している。本研究では、アントラセンどうしの2,7位が直接結合し、それが6個環状に連なった分子2を合成した(図1、論文より転載)。その合成は、2,7‐ジブロモアントラセン誘導体4をNi(cod)2/bipy (bipy: 2,2′-bipyridine)によるホモカップリング反応に付すことで達成した。副生成物として、アントラセンが7、8、9個環状に連なった環状分子が得られた(それぞれ27 (0.6%)、28 (1.4%)、29 (0.6%))。

著者らは環状分子2、および環状分子2のフラーレンの包接錯体2⊃C60、それぞれの単結晶X線構造解析に成功した(図2、論文より転載)。

環状分子2の結晶構造は歪んだ平面構造をとっていた。アントラセン環どうしのねじれ角は6-28°程度である。対面するアントラセン環9位の水素‐水素間距離は平均で1.27 nmであった。水素のファンデルワールス半径(0.12 nm)を考慮して差し引けば、環内孔の直径はおおよそ1.03 nmである。C60の直径は1.02 nmであるから、環状分子2がC60の包接に適した構造であるといえる。

図2. 単結晶X線構造解析:(a) 環状分子2; (b) ホスト‐ゲスト錯体2⊃C60

 

包接錯体2⊃C60は土星のような構造として結晶構造が観測された。環の内側を向いたアントラセンの水素からフラーレン表面までの距離は0.29-0.33 nmであり、アントラセン環のCH結合とフラーレン表面のπ結合とでCH‐π相互作用が多数存在する。この相互作用が包接の駆動力となっている。

図3. 1H NMRスペクトル (toluene-d8, 298 K):(a) 環状分子227および28の混合溶液(2:27:28= 2:4:3);(b) (a)とC60の混合溶液 (2:27:28:C60= 2:4:3:8);(c) 2とC60を種々の混合比で調整した溶液

 

次に、著者らは溶液状態でのホストゲスト相互作用を検証した(図3、論文より転載)。環状分子227および28が混在する溶液にフラーレンを加えた(2:27:28:C60= 2:4:3:8)。その溶液の1H NMRを測定したところ、2に含まれるアントラセン環9位のプロトンのシグナルのみが低磁場シフトした(図3(a)、(b))。続いて、環状分子2とフラーレンを種々の比率(2:C60 = 10:0~1:9)で混合した溶液を調製した。その1H NMRを測定すると、C60の比率が多くなるほどアントラセン環9位のプロトンのシグナルのみが低磁場シフトした(図3(c))。Job’s plotによって複合体中に含まれる2とC60 の比率を求めると、2:C60 = 1:1であった。すなわち、溶液中においても2とC60は 1:1のホスト-ゲスト錯体をつくることがわかった。

最後に、その相互作用における熱力学的パラメーターをNMRにおける滴定実験によって算出した。その結果は以下である:会合定数Ka = (2.3 ± 0.2) × 103 M-1(298 K)、ギブス自由エネルギーΔG = -19.2 kJ·mol-1(298 K)、エンタルピー項ΔH = -18.1 ± 2.3 kJ·mol-1(298 K)、エントロピー項-TΔS = -0.8 ± 2.2 kJ·mol-1(298 K)。この結果は、ホストゲスト錯体形成にはエンタルピー項が寄与していることを示している。ホスト-ゲスト錯体形成による自由度の低下よりも、脱溶媒和の寄与が大きいことを示唆している。これらの錯体形成に関しては理論計算によっても考察している(詳細は本文を参照)。

関連書籍

関連リンク

The following two tabs change content below.
Trogery12

Trogery12

博士(工学)。ポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. 既存の農薬で乾燥耐性のある植物を育てる
  2. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応…
  3. 不正の告発??
  4. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  5. 無金属、温和な条件下で多置換ピリジンを構築する
  6. BASFとはどんな会社?-2
  7. Nazarov環化を利用した全合成研究
  8. スイスでポスドクはいかが?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2007年秋の褒章
  2. 若手&高分子を専門としていない人のための『速習 高分子化学 入門』【終了】
  3. Density Functional Theory in Quantum Chemistry
  4. 150度以上の高温で使える半導体プラスチック
  5. 「オープンソース・ラボウェア」が変える科学の未来
  6. 組曲『ノーベル化学賞』
  7. ルーブ・ゴールドバーグ反応 その2
  8. 結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開
  9. クロロ(1,5-シクロオクタジエン)イリジウム(I) (ダイマー):Chloro(1,5-cyclooctadiene)iridium(I) Dimer
  10. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-MS測定を!(2)

関連商品

注目情報

注目情報

最新記事

ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―

第236回のスポットライトリサーチは、東京大学生産技術研究所 石井研究室で博士研究員をされていた、服…

「あの人は仕事ができる」と評判の人がしている3つのこと

仕事を辞めて、転職をしたいと思う動機の一つとして、「今の会社で評価されていない」という理由がある。し…

光で2-AGの量を制御する

ケージド化合物を用いた2-AG量の操作法が初めて開発された。2-AG量を時空間的に操作することができ…

葉緑素だけが集積したナノシート

第235回のスポットライトリサーチは、立命館大学 民秋研究室で博士研究員をされていた、庄司 淳(しょ…

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

Chem-Station Twitter

PAGE TOP