[スポンサーリンク]

化学者のつぶやき

分子で作る惑星、その名もナノサターン!

[スポンサーリンク]

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラーレン(C60)が惑星本体、アントラセンを主鎖骨格に持つ大環状分子が土星の輪を模したような分子構造を持つ、ホスト−ゲスト錯体である。

Nano-Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60
Yamamono,Y.; Tsurumaki, E.; Wakamatsu, K.; Toyota, T.*
Angew. Chem. Int. Ed. 2018, 57, Early View DOI: 10.1002/anie.201804430

本論文の概要

図1. アントラセンを主鎖骨格とする大環状分子2nの合成(土星の輪の部分の合成)

 

著者の豊田先生らは、アントラセンにこだわった特徴ある分子を多数報告している。本研究では、アントラセンどうしの2,7位が直接結合し、それが6個環状に連なった分子2を合成した(図1、論文より転載)。その合成は、2,7‐ジブロモアントラセン誘導体4をNi(cod)2/bipy (bipy: 2,2′-bipyridine)によるホモカップリング反応に付すことで達成した。副生成物として、アントラセンが7、8、9個環状に連なった環状分子が得られた(それぞれ27 (0.6%)、28 (1.4%)、29 (0.6%))。

著者らは環状分子2、および環状分子2のフラーレンの包接錯体2⊃C60、それぞれの単結晶X線構造解析に成功した(図2、論文より転載)。

環状分子2の結晶構造は歪んだ平面構造をとっていた。アントラセン環どうしのねじれ角は6-28°程度である。対面するアントラセン環9位の水素‐水素間距離は平均で1.27 nmであった。水素のファンデルワールス半径(0.12 nm)を考慮して差し引けば、環内孔の直径はおおよそ1.03 nmである。C60の直径は1.02 nmであるから、環状分子2がC60の包接に適した構造であるといえる。

図2. 単結晶X線構造解析:(a) 環状分子2; (b) ホスト‐ゲスト錯体2⊃C60

 

包接錯体2⊃C60は土星のような構造として結晶構造が観測された。環の内側を向いたアントラセンの水素からフラーレン表面までの距離は0.29-0.33 nmであり、アントラセン環のCH結合とフラーレン表面のπ結合とでCH‐π相互作用が多数存在する。この相互作用が包接の駆動力となっている。

図3. 1H NMRスペクトル (toluene-d8, 298 K):(a) 環状分子227および28の混合溶液(2:27:28= 2:4:3);(b) (a)とC60の混合溶液 (2:27:28:C60= 2:4:3:8);(c) 2とC60を種々の混合比で調整した溶液

 

次に、著者らは溶液状態でのホストゲスト相互作用を検証した(図3、論文より転載)。環状分子227および28が混在する溶液にフラーレンを加えた(2:27:28:C60= 2:4:3:8)。その溶液の1H NMRを測定したところ、2に含まれるアントラセン環9位のプロトンのシグナルのみが低磁場シフトした(図3(a)、(b))。続いて、環状分子2とフラーレンを種々の比率(2:C60 = 10:0~1:9)で混合した溶液を調製した。その1H NMRを測定すると、C60の比率が多くなるほどアントラセン環9位のプロトンのシグナルのみが低磁場シフトした(図3(c))。Job’s plotによって複合体中に含まれる2とC60 の比率を求めると、2:C60 = 1:1であった。すなわち、溶液中においても2とC60は 1:1のホスト-ゲスト錯体をつくることがわかった。

最後に、その相互作用における熱力学的パラメーターをNMRにおける滴定実験によって算出した。その結果は以下である:会合定数Ka = (2.3 ± 0.2) × 103 M-1(298 K)、ギブス自由エネルギーΔG = -19.2 kJ·mol-1(298 K)、エンタルピー項ΔH = -18.1 ± 2.3 kJ·mol-1(298 K)、エントロピー項-TΔS = -0.8 ± 2.2 kJ·mol-1(298 K)。この結果は、ホストゲスト錯体形成にはエンタルピー項が寄与していることを示している。ホスト-ゲスト錯体形成による自由度の低下よりも、脱溶媒和の寄与が大きいことを示唆している。これらの錯体形成に関しては理論計算によっても考察している(詳細は本文を参照)。

関連書籍

関連リンク

The following two tabs change content below.
Trogery12

Trogery12

博士(工学)。ポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. 誰でも参加OK!計算化学研究を手伝おう!
  2. Kindle Paperwhiteで自炊教科書を読んでみた
  3. 高分子討論会:ソーラーセイルIKAROS
  4. SciFinder Future Leaders 2017: プ…
  5. π電子系イオンペアの精密合成と集合体の機能開拓
  6. ラウリマライドの全合成
  7. 超一流化学者の真剣勝負が生み出した丸かぶり論文
  8. 触媒的syn-ジクロロ化反応への挑戦

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Scifinderが実験項情報閲覧可能に!
  2. アスピリン あすぴりん aspirin 
  3. アノードカップリングにより完遂したテバインの不斉全合成
  4. ドーパミンで音楽にシビれる
  5. メチオニン選択的タンパク質修飾反応 Met-Selective Protein Modification
  6. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析!
  7. 抗がん剤などの原料の新製造法
  8. フィッツィンガー キノリン合成 Pfitzinger Quinoline Synthesis
  9. V字型分子が実現した固体状態の優れた光物性
  10. 振動結合:新しい化学結合

関連商品

注目情報

注目情報

最新記事

お前はもう死んでいる:不安定な試薬たち|第4回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

第60回―「エネルギー・環境化学に貢献する金属-有機構造体」Martin Schröder教授

第60回の海外化学者インタビューは、マーティン・シュレーダー教授です。ノッティンガム大学化学科(訳注…

炭素置換Alアニオンの合成と性質の解明

第249回のスポットライトリサーチは、名古屋大学大学院工学研究科(山下研究室)・車田 怜史 さんにお…

第59回―「機能性有機ナノチューブの製造」清水敏美 教授

第59回の海外化学者インタビューは日本から、清水敏美 教授です。独立行政法人産業技術総合研究所(AI…

高分子鎖デザインがもたらすポリマーサイエンスの再創造 進化する高分子材料 表面・界面制御アドバンスト コース

詳細・お申込みはこちら日時2020年 4月16日(木)、17日(金)全日程2日間  …

光で水素を放出する、軽量な水素キャリア材料の開発

第248回のスポットライトリサーチは、東京工業大学物質理工学院(宮内研究室)・河村 玲哉さんにお願い…

Chem-Station Twitter

PAGE TOP