[スポンサーリンク]

化学者のつぶやき

分子で作る惑星、その名もナノサターン!

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラーレン(C60)が惑星本体、アントラセンを主鎖骨格に持つ大環状分子が土星の輪を模したような分子構造を持つ、ホスト−ゲスト錯体である。

Nano-Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60
Yamamono,Y.; Tsurumaki, E.; Wakamatsu, K.; Toyota, T.*
Angew. Chem. Int. Ed. 2018, 57, Early View DOI: 10.1002/anie.201804430

本論文の概要

図1. アントラセンを主鎖骨格とする大環状分子2nの合成(土星の輪の部分の合成)

 

著者の豊田先生らは、アントラセンにこだわった特徴ある分子を多数報告している。本研究では、アントラセンどうしの2,7位が直接結合し、それが6個環状に連なった分子2を合成した(図1、論文より転載)。その合成は、2,7‐ジブロモアントラセン誘導体4をNi(cod)2/bipy (bipy: 2,2′-bipyridine)によるホモカップリング反応に付すことで達成した。副生成物として、アントラセンが7、8、9個環状に連なった環状分子が得られた(それぞれ27 (0.6%)、28 (1.4%)、29 (0.6%))。

著者らは環状分子2、および環状分子2のフラーレンの包接錯体2⊃C60、それぞれの単結晶X線構造解析に成功した(図2、論文より転載)。

環状分子2の結晶構造は歪んだ平面構造をとっていた。アントラセン環どうしのねじれ角は6-28°程度である。対面するアントラセン環9位の水素‐水素間距離は平均で1.27 nmであった。水素のファンデルワールス半径(0.12 nm)を考慮して差し引けば、環内孔の直径はおおよそ1.03 nmである。C60の直径は1.02 nmであるから、環状分子2がC60の包接に適した構造であるといえる。

図2. 単結晶X線構造解析:(a) 環状分子2; (b) ホスト‐ゲスト錯体2⊃C60

 

包接錯体2⊃C60は土星のような構造として結晶構造が観測された。環の内側を向いたアントラセンの水素からフラーレン表面までの距離は0.29-0.33 nmであり、アントラセン環のCH結合とフラーレン表面のπ結合とでCH‐π相互作用が多数存在する。この相互作用が包接の駆動力となっている。

図3. 1H NMRスペクトル (toluene-d8, 298 K):(a) 環状分子227および28の混合溶液(2:27:28= 2:4:3);(b) (a)とC60の混合溶液 (2:27:28:C60= 2:4:3:8);(c) 2とC60を種々の混合比で調整した溶液

 

次に、著者らは溶液状態でのホストゲスト相互作用を検証した(図3、論文より転載)。環状分子227および28が混在する溶液にフラーレンを加えた(2:27:28:C60= 2:4:3:8)。その溶液の1H NMRを測定したところ、2に含まれるアントラセン環9位のプロトンのシグナルのみが低磁場シフトした(図3(a)、(b))。続いて、環状分子2とフラーレンを種々の比率(2:C60 = 10:0~1:9)で混合した溶液を調製した。その1H NMRを測定すると、C60の比率が多くなるほどアントラセン環9位のプロトンのシグナルのみが低磁場シフトした(図3(c))。Job’s plotによって複合体中に含まれる2とC60 の比率を求めると、2:C60 = 1:1であった。すなわち、溶液中においても2とC60は 1:1のホスト-ゲスト錯体をつくることがわかった。

最後に、その相互作用における熱力学的パラメーターをNMRにおける滴定実験によって算出した。その結果は以下である:会合定数Ka = (2.3 ± 0.2) × 103 M-1(298 K)、ギブス自由エネルギーΔG = -19.2 kJ·mol-1(298 K)、エンタルピー項ΔH = -18.1 ± 2.3 kJ·mol-1(298 K)、エントロピー項-TΔS = -0.8 ± 2.2 kJ·mol-1(298 K)。この結果は、ホストゲスト錯体形成にはエンタルピー項が寄与していることを示している。ホスト-ゲスト錯体形成による自由度の低下よりも、脱溶媒和の寄与が大きいことを示唆している。これらの錯体形成に関しては理論計算によっても考察している(詳細は本文を参照)。

関連書籍

関連リンク

The following two tabs change content below.
Trogery12

Trogery12

博士(工学)。ポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. 化学の力で複雑なタンパク質メチル化反応を制御する
  2. システインの位置選択的修飾を実現する「π-クランプ法」
  3. カーボンナノリング合成に成功!
  4. 一度に沢山の医薬分子を放出できるプロドラッグ
  5. 有機化学者の仕事:製薬会社
  6. 橋頭位二重結合を有するケイ素化合物の合成と性質解明
  7. 有機反応を俯瞰する ーMannich 型縮合反応
  8. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. クリスティーナ・ホワイト M. Christina White
  2. 「発明の対価」8億円求め提訴=塩野義製薬に元社員-大阪地裁
  3. 国内 ブロックバスター後発品続々と販売開始
  4. 超一流化学者の真剣勝負が生み出した丸かぶり論文
  5. 第27回 「有機化学と光化学で人工光合成に挑戦」今堀 博 教授
  6. ポリアクリル酸ナトリウム Sodium polyacrylate
  7. ペプチドのらせんフォールディングを経る多孔性配位高分子の創製
  8. 「マイクロリアクター」装置化に成功
  9. ニック・ホロニアック Nicholas Holonyak, Jr.
  10. 国公立大入試、2次試験の前期日程が実施 ~東京大学の化学の試験をレビュー~

関連商品

注目情報

注目情報

最新記事

投票!2018年ノーベル化学賞は誰の手に!?

今年も9月終盤にさしかかり、毎年恒例のノーベル賞シーズンがやって参りました!化学賞は日本時間…

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

PAGE TOP