[スポンサーリンク]

化学者のつぶやき

タミフルの新規合成法・その4

[スポンサーリンク]

A concise synthesis of (-)-oseltamivir
Trost, B. M.; Zhang, T. Angew. Chem. Int. Ed. 2008, 47, Early View. doi:10.1002/anie.200800282

先日「つぶやき」で書いた講演紹介でも簡単に触れましたが、スタンフォード大学のTrost教授らによって、タミフルの新たな短工程合成法が報告されました。

当サイトでは過去にもタミフルの合成法を数種類取り上げています(参照:有機って面白いよね!の記事・化学者のつぶやき「その1」「その2」「その3」)。Trostらの報告において特筆すべきは、わずか8工程という、最短の工程数を実現している点です。これを実現せしめている鍵とは、一体何でしょうか?

以前に紹介したKannらのルートと同じく、彼らは炭素原子を全て含んだ骨格に官能基を生やしていくアプローチを取っています。彼らのルートでは、最新鋭の触媒技術がふんだんに使われているのが特徴です。とりわけ目を引く変換を取り上げてみることにしましょう。

まずは、第一段階の不斉アリル位置換反応(不斉辻-Trost反応)。Trost自身らによって開発されたキラルアリルアミン合成法を上手く用いています。原料はラセミ体で市販されていますが、酸化的付加後にmeso型のπ-アリル中間体を形成するため、続く不斉求核付加によってキラルな化合物を得ることが出来ます。ドナーには市販のTMSフタルイミドを用いています。酸化的付加後生じるカルボキシレートアニオンがTMS基を捕捉し、求核性の高いイミドアニオンが生じます。通常のイミドではアニオン生成効率が低いためか、カルボキシレートとの電子的反発のためか、上手く反応が進行しないそうです。フタロイル保護基(Phth)は、ヒドラジンで選択的脱保護が可能です(ODOOS:Gabrielアミン合成を参照)。

 

 tamiflu_trost_1.gif

続いて、ロジウムナイトレニドを経る位置・立体選択的アジリジン化[1]。用いている試薬を見ても、この段階は相当に検討が重ねられていることが想像できます。DuBoisらによって開発された条件およびRh2(esp)2触媒[2]が特に有効だったようです。esp配位子は反応進行に必須とされるロジウム二核構造を安定化し、触媒失活を防ぐ役割を果たしています。SES基というのは見慣れない保護基ですが、TBAFなどのフッ素源で選択的脱保護可能なスルホン系保護基です。この条件では、強めの電子求引基を持つアミドしか適用できないため、SES→Acの掛け替えが必要になってしまっています(詳細な反応機構はODOOS:DuBoisアミノ化を参照)。

 

 tamiflu_trost_2.gifrh2esp2.gif

 

この二種類の反応を巧みに用い、導入困難なキラルtrans-vic-ジアミン単位を短工程で構築しています。
結局、全8工程・通算収率30%と、報告されている中で最も短工程なルートを実現せしめています。かなり突き詰めたルートであり、これを超える効率はちょっとやそっとでははじき出せないように思えます。

 

関連文献

  1. 金属触媒を用いるアジリジン合成に関する最近の総説:Halfen, J. A. Curr. Org. Chem. 2005, 9, 657.
  2. Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378. DOI: 10.1021/ja0446294

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. フッ素のチカラで光学分割!?〜配向基はじめました〜
  2. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  3. 金属・ガラス・製紙・化学・土石製品業界の脱炭素化 〜合成、焼成、…
  4. 自己組織化ねじれ双極マイクロ球体から円偏光発光の角度異方性に切り…
  5. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  6. ジアゾニウム塩が開始剤と捕捉剤を“兼務”する
  7. ヒドロキシ基をスパッと(S)、カット(C)、して(S)、アルキル…
  8. 印象に残った天然物合成 2

注目情報

ピックアップ記事

  1. ニコラス反応 Nicholas Reaction
  2. 未来の車は燃料電池車でも電気自動車でもなくアンモニア車に?
  3. 遠藤守信 Morinobu Endo
  4. グライコシンターゼ (Endo-M-N175Q) : Glycosynthase (Endo-M-N175Q)
  5. どっちをつかう?:in spite ofとdespite
  6. 石見銀山遺跡
  7. マイクロ波を用いた革新的製造プロセスと電材領域への事業展開 (ナノ粒子合成、フィルム表面処理/乾燥/接着/剥離、ポリマー乾燥/焼成など)
  8. UBEの新TVCM『ストーリーを変える、ケミストリー』篇、放映開始
  9. Essential細胞生物学
  10. 【書籍】りょうしりきがく for babies

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2008年4月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP