[スポンサーリンク]

一般的な話題

Goodenough教授の素晴らしすぎる研究人生

[スポンサーリンク]

本日ノーベル化学賞発表です。
今年は無機化学分野ではないかということで、MOFも有力ですが、実用化という面ではリチウムイオン電池も有力な候補と思われます。
本稿ではリチウムイオン電池を語る上で忘れてはならない人物、John B. Goodenoughについて調べたことをまとめました。

Goodenough教授はリチウムイオン電池の創始者として有名ですが、生まれはなんと1922年、現在96歳という大御所です。エール大で学生時代を過ごしたのはなんと太平洋戦争末期、ジョージ・H・W・ブッシュ(父ブッシュ)の入学と入れ違いで大学を卒業します。学部を卒業後第二次世界大戦に参加し、戻ってきてからシカゴ大で物理学の学位を取得しています。ツェナーダイオードで有名なGlarence Zener研でのものです。

その後MITにて磁性化合物の研究を行います。彼の初期の仕事は「磁石がどのようにして磁石になるのか」を解明する研究です。A-B-Cという3つの原子が並んでいるとき、A-B、B-Cという結合を考えるだけでなく、AとCの間に働く相互作用がどうなるかを説明し、AとCの電子状態が影響を及ぼしあっていると考えると磁石の性質を見事に解明できるというものです。

これは今では二重交換相互作用、あるいは超交換相互作用と呼ばれています。化学結合を考えるのに隣の原子との結合だけを考えるのではなく、磁性を持つ物質がどのような状態にあるかを調べるという、いわば化学結合の基盤の一つを創り出した研究であると言えます。これが1955年ごろのことです。

この仕事は金森先生の仕事を合わせて、現在ではGoodenough-Kanamori則という化学結合の基本法則となっています。

その後金属酸化物の研究(1950年代~1960年代)を経て、1970年代に固体中でナトリウムイオンが動く酸化物があるらしいと言うことを発見します。これは後にNASICON (NAtrium ion Super Ionic CONductor)と呼ばれる材料になります。その後80年代に入ってコバルト酸リチウム(水島教授と同時期)、マンガンスピネル、オリビン型リン酸鉄といった、現在のリチウムイオン電池の正極材料に使われる酸化物を用いた電池を次々に提案していきます。

理論から材料開発、そして電池作りまでを一人でやってのけたという巨人です。

化学の根本となる量子力学や結合論について深く勉強しながらモノづくりへとつなげるというGoodenough教授の姿勢は、我々にとっても示唆に富んでいるように思います。

何年も前からリチウム電池の開発者であるJohn B. Goodenough教授にはノーベル賞の噂があり、今年ももしかしたら受賞されるかもしれません。

しかしながら、リチウムイオン電池が世に広まったのは、SONY、東芝、NTT、旭化成、三洋などの日本の企業やそこに勤めていた研究者たちの努力が必須であったことを忘れてはなりません。美しい正極材料の開発だけで無く、炭素負極の発明、安全装置の開発、爆発事件への対処と安全な電池の開発など、日本企業の研究者が「リチウム電池」というダイアモンドの原石を磨き、便利な「リチウムイオン電池」へと発展させていったといえます。そういう意味では炭素負極を開発したSONYの西美緒氏や旭化成の吉野彰が共同受賞しても全くおかしくないように、個人的には思います。

関連書籍

[amazonjs asin=”4753656381″ locale=”JP” tmpl=”Small” title=”リチウムイオン電池の科学―ホスト・ゲスト系電極の物理化学からナノテク材料まで (材料学シリーズ)”][amazonjs asin=”4785386649″ locale=”JP” tmpl=”Small” title=”リチウムイオン二次電池の話―ポピュラー・サイエンス (ポピュラーサイエンス)”]

関連記事

  1. ボロン酸エステルをモノ・ジフルオロメチル基に変える
  2. 単分子の電気化学反応を追う!EC-TERSとは?
  3. 透明なカニ・透明な紙:バイオナノファイバーの世界
  4. 医薬品の品質管理ーChemical Times特集より
  5. 「アニオン–π触媒の開発」–ジュネーブ大学・Matile研より
  6. すべてがFになる
  7. 「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学…
  8. 三核ホウ素触媒の創製からクリーンなアミド合成を実現

注目情報

ピックアップ記事

  1. 自己修復する単一分子素子「DNAジッパー」
  2. ドミノ遊びのように炭素結合をつくる!?
  3. 2021年、ムーアの法則が崩れる?
  4. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて①~
  5. 痔の薬のはなし after
  6. ベンザイン Benzyne
  7. 免疫(第6版): からだを護る不思議なしくみ
  8. ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)
  9. 創薬におけるPAINSとしての三環性テトラヒドロキノリン類
  10. 未来切り拓くゼロ次元物質量子ドット

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP