[スポンサーリンク]

世界の化学者データベース

ジョン・グッドイナフ John B. Goodenough

[スポンサーリンク]

ジョン・バニスタ・グッドイナフ (John Bannister Goodenough、1922年7月25日-)は、アメリカの化学者・物理学者である。米テキサス大学オースティン校教授(写真:Giving to UT )。「リチウムイオン電池の開発」の業績により、2019年にノーベル化学賞を受賞した。

経歴

1943 イェール大学 卒業
1952 シカゴ大学 博士号取得 (Clarence Zener 教授)
1951-1952 ウエスティングハウス社 研究技術者
1952-1976 マサチューセッツ工科大学 リンカーン研究所グループリーダー
1976-1986 オックスフォード大学 教授
1986-現在 テキサス大学オースティン 教授

受賞歴

1976 RCS Centenary Lecturer
1980 RSC Solid State Chemistry Prize
1989 Von Hippel Award
1996 University of Pennsylvania Medal for Distinguished Achievement
1997 John Bordeen Award
1999 Olin Palladium Award
2001 日本国際賞
2009 Enrico Fermi Award
2011 アメリカ国家科学賞
2014 チャールズ・スターク・ドレイパー賞
2015 トムソン・ロイター引用栄誉賞
2017 ウェルチ化学賞
2018 ベンジャミン・フランクリンメダル
2019 コプリメダル
2019 ノーベル化学賞

研究概要

リチウムイオン二次電池の開発[1-5]

1979年、グッドイナフと水島公一は、リチウムイオンを吸収・放出するリチウムコバルト酸化物(LixCoO2)が電池陽極として活用可能であることを示した[1]。

ノーベル財団プレスリリースより引用・改変

これがリチウムイオン電池の技術的土台となり、後にSONYによって市販されるに至った。長寿命・大容量・軽量・小型・メモリ効果の無いリチウムイオンバッテリーは、今日では携帯電話・デジタルカメラ・ハンディビデオ・ラップトップPCなど、様々なポータブル電子機器に搭載されている。

本業績が評価され、M. Stanley Whittingham吉野彰とともに2019年のノーベル化学賞を受賞した。

グッドイナフ・金森則の提唱[6] 材料における磁気超交換の符号を定める法則。

コメント&その他

  1. 材料化学分野において傑出した業績を上げた研究者に対し、ジョン・グッドイナフ賞が2008年より与えられている。
  2. リチウムイオン電池のカソード材料を開発したのは、英国オックスフォード大学時代である。

関連動画

関連文献

  1.  Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Materials Research Bulletin 1980, 15, 783.
  2. Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. Solid State Ionics, 1985, 17 , 13.
  3. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., Materials Research Bulletin 1983, 18, 461.
  4. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Journal Electrochemical Society 1997, 144, 1188.
  5. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Goodenough, J. B. Journal Electrochemical Society 1997, 144, 2581.
  6. Good enough, J. B. Phys. Rev. 1955, 100, 564.

関連書籍

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 井口 洋夫 Hiroo Inokuchi
  2. 飯島澄男 Sumio Iijima
  3. 松原 亮介 Ryosuke Matsubara
  4. 立体電子効果―三次元の有機電子論
  5. 紫綬褒章化学者一覧 Medal with Purple Ribb…
  6. サミュエル・ダニシェフスキー Samuel J. Danishe…
  7. M.G.フィン M. G. Finn
  8. マイケル・クリシェー Michael J. Krische

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 単一分子の電界発光の機構を解明
  2. 4,7-ジブロモ-2,1,3-ベンゾチアジアゾール:4,7-Dibromo-2,1,3-benzothiadiazole
  3. 分子光化学の原理
  4. 創薬に求められる構造~sp3炭素の重要性~
  5. 第十二回ケムステVシンポ「水・有機材料・無機材料の最先端相転移現象 」
  6. 計算化学記事まとめ
  7. エノールエーテルからα-三級ジアルキルエーテルをつくる
  8. 科学:太古の海底に眠る特効薬
  9. 多置換ケトンエノラートを立体選択的につくる
  10. 勤務地にこだわり理想も叶える!転職に成功したエンジニアの話

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

Chem-Station Twitter

PAGE TOP