[スポンサーリンク]

世界の化学者データベース

ジョン・グッドイナフ John B. Goodenough

[スポンサーリンク]

ジョン・バニスタ・グッドイナフ (John Bannister Goodenough、1922年7月25日-)は、アメリカの化学者・物理学者である。米テキサス大学オースティン校教授(写真:Giving to UT )。「リチウムイオン電池の開発」の業績により、2019年にノーベル化学賞を受賞した。

経歴

1943 イェール大学 卒業
1952 シカゴ大学 博士号取得 (Clarence Zener 教授)
1951-1952 ウエスティングハウス社 研究技術者
1952-1976 マサチューセッツ工科大学 リンカーン研究所グループリーダー
1976-1986 オックスフォード大学 教授
1986-現在 テキサス大学オースティン 教授

受賞歴

1976 RCS Centenary Lecturer
1980 RSC Solid State Chemistry Prize
1989 Von Hippel Award
1996 University of Pennsylvania Medal for Distinguished Achievement
1997 John Bordeen Award
1999 Olin Palladium Award
2001 日本国際賞
2009 Enrico Fermi Award
2011 アメリカ国家科学賞
2014 チャールズ・スターク・ドレイパー賞
2015 トムソン・ロイター引用栄誉賞
2017 ウェルチ化学賞
2018 ベンジャミン・フランクリンメダル
2019 コプリメダル
2019 ノーベル化学賞

研究概要

リチウムイオン二次電池の開発[1-5]

1979年、グッドイナフと水島公一は、リチウムイオンを吸収・放出するリチウムコバルト酸化物(LixCoO2)が電池陽極として活用可能であることを示した[1]。

ノーベル財団プレスリリースより引用・改変

これがリチウムイオン電池の技術的土台となり、後にSONYによって市販されるに至った。長寿命・大容量・軽量・小型・メモリ効果の無いリチウムイオンバッテリーは、今日では携帯電話・デジタルカメラ・ハンディビデオ・ラップトップPCなど、様々なポータブル電子機器に搭載されている。

本業績が評価され、M. Stanley Whittingham吉野彰とともに2019年のノーベル化学賞を受賞した。

グッドイナフ・金森則の提唱[6] 材料における磁気超交換の符号を定める法則。

コメント&その他

  1. 材料化学分野において傑出した業績を上げた研究者に対し、ジョン・グッドイナフ賞が2008年より与えられている。
  2. リチウムイオン電池のカソード材料を開発したのは、英国オックスフォード大学時代である。

関連動画

関連文献

  1.  Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Materials Research Bulletin 1980, 15, 783.
  2. Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. Solid State Ionics, 1985, 17 , 13.
  3. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., Materials Research Bulletin 1983, 18, 461.
  4. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Journal Electrochemical Society 1997, 144, 1188.
  5. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Goodenough, J. B. Journal Electrochemical Society 1997, 144, 2581.
  6. Good enough, J. B. Phys. Rev. 1955, 100, 564.

関連書籍

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 原田 明 Akira Harada
  2. なぜあなたの研究は進まないのか?
  3. 2016年1月の注目化学書籍
  4. エリック・ソレンセン Eric J. Sorensen
  5. 山口健太郎 Kentaro Yamaguchi
  6. 誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるた…
  7. 宮田完ニ郎 Miyata Kanjiro
  8. 畠山琢次 Takuji Hatakeyama

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. iPhone/iPod Touchで使える化学アプリ-ケーション【Part 3】
  2. 相間移動触媒 Phase-Transfer Catalyst (PTC)
  3. 後発医薬品、相次ぎ発売・特許切れ好機に
  4. トリス(トリフェニルホスフィン)ロジウム(I) クロリド:Tris(triphenylphosphine)rhodium(I) Chloride
  5. 【ケムステSlackに訊いてみた①】有機合成を学ぶオススメ参考書を教えて!
  6. エレクトライド:大量生産に道--セメント原料から次世代ディスプレーの材料
  7. オキシ水銀化・脱水銀化 Oxymercuration-Demercuration
  8. 免疫系に捕そくされない超微粒子の薬剤
  9. Dead Endを回避せよ!「全合成・極限からの一手」②
  10. 吸入ステロイド薬「フルタイド」の調査結果を発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
« 8月   10月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

こんなのアリ!?ギ酸でヒドロカルボキシル化

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラ…

ポンコツ博士研究員の海外奮闘録 ケムステ異色連載記

本稿は,世間一般にほとんど知られていない地方私立大学で学位を修了し,エリートでもなく何も成し遂げてい…

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP