[スポンサーリンク]

化学者のつぶやき

非対称化合成戦略:レセルピン合成

[スポンサーリンク]

非対称化戦略を用いたレセルピン合成が達成された。今までの全合成と比べても構造的に簡単な中間体を用いて合成することができる。

レセルピン

天然物合成は希少化合物の合成的供給を可能にするだけでなく、複雑構造物質を作り上げる新規合成戦略の提示の両面から重要である。インドジャボクの根・根茎から単離、構造決定されたレセルピン(1: 1A)の合成を通じてWoodwardは環状立体制御法を提示し、これは現代の有機合成においてもスタンダードとなっている。1は高度に官能基化されたシクロヘキサン環(E)を含む五環式骨格をもつ。1956Woodwardらは、環状構造を活用する巧みな立体制御を用いて1を合成した(1B)[1]。この報告以降多くの名だたる合成化学者が[4+2]付加環化反応、分子内ラジカル環化やコープ転位などを用いて1を合成している。やや古いが、レセルピン合成の詳細は2005年の総説を参考にしてほしい[2]

 今回、ソウル大学のChen教授らは、彼らが注力している非対称化を鍵とする合成戦略[3]を用いてレセルピンの合成を達成した。逆合成解析の結果、彼らはレセルピンのもつE環は対称シクロヘキサノン8から合成できると考えた(1C)。すなわち、8に対してトリプタミン骨格を導入した後、合成中盤で分子内非対称化を行った。最後にE環を官能基変換することで1を合成した。非対称化を用いることで過去の合成と比較して構造的に単純なE環前駆体を用いて1の全合成を達成した。

図1. (A) レセルピンの構造 (B) Woodwardによる全合成  (C) 今回の合成戦略

“A Desymmetrization-Based Total Synthesis of Reserpine”

Park, J.; Chen, D. Y. -K. Angew. Chem.,Int. Ed.2018, 57, 16152.

DOI: 10.1002/anie.201810974

論文著者の紹介

研究者:David Yu-Kai Chen 

研究者の経歴:

1998-2001 Ph.D. Cambridge University, UK. (Prof. I. Paterson)
2002-2003 Postdoctoral Research Associate, The Scripps Research Institute, San Diego, USA (Prof. K. C. Nicolaou)
2004-2005 Senior Research Chemist, Merck Research Laboratories, Rahway, New Jersey, USA
2005-2011 Principal Investigator, Chemical Synthesis Laboratory @Biopolis, A*STAR, Singapore
2005-2011 Adjunct Associate Professor, Nanyang Technological University, Singapore
2011- Professor, Seoul National University, South Korea

研究内容:天然物の全合成

論文の概要

Chen教授らは、E環前駆体として対称かつ合成が容易な11に着目した。酸性条件下、対称シクロヘキサノン116-メトキシトリプタミン12とのPictet–Spengler反応、続く保護により13を合成した。その後オスミウム酸化Criegeeグリコール開裂の二工程により13の二重結合を酸化開裂しジアール体15a(およびビスヘミアセタール体15との混合物)へと導いた。この混合物に対してPd/Cを用いた接触還元をすることでCbz基の除去、続くイミニウムの形成とそれの還元反応(タンデム反応)によって非対称化を行うことで18を合成し、1がもつ炭素骨格の形成を完了した。その後、数工程を経て合成した19に対してLプロリン触媒存在下ニトロソベンゼンを用いるC17位の位置および立体選択的な酸化を含むE環の官能基変換と脱保護などを経てレセルピン(1)の合成を達成した。詳細は論文を参照されたい。

図2. 非対称化戦略を用いるレセルピンの合成

以上のように、非対称化というアプローチを用いることで過去の合成に比べて単純な構造の化合物を出発物質に用いてレセルピンの合成が可能となった。今後、さらに複雑な骨格を有する天然物への適用が期待される。

参考文献

  1. Woodward, R. B.; Bader, F. E.; Bickel, H., Frey, A. J.; Kierstead, R. W. Tetrahedron1958, 2, DOI: 10.1016/0040-4020(58)88022-9
  2. Chen, F.-E.; Huang, J. Chem. Rev. 2005,105, 4671. DOI:10.1021/cr050521a]
  3. Selected examples of desymmetrization-based total synthesis, see: (a) Inoue, M.; Sato, T.; Hirama, M. J. Am. Chem. Soc. 2003, 125, 10772. DOI: 10.1021/ja036587+(b) Malinowski, J. T.; Sharpe, R. J.; Johnson, J. S. Science 2013, 340, 180. 10.1126/science.1234756(c) Nagatomo, M.; Koshimizu, M.; Masuda, K.; Tabuchi, T.; Urabe, D.; Inoue, M. J. Am. Chem. Soc.2014, 136, 5916. 10.1021/ja502770n(d) Yoshii, Y.; Tokuyama, H.; Chen, D. Y.-K.; Angew. Chem., Int. Ed. 2017, 56, 12277. DOI: 10.1002/anie.201706312
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. キムワイプLINEスタンプを使ってみよう!
  2. なんだこの黒さは!光触媒効率改善に向け「進撃のチタン」
  3. C&EN コラム記事 ~Bench & Cu…
  4. 「赤チン」~ある水銀化合物の歴史~
  5. 第15回ケムステVシンポジウム「複合アニオン」を開催します!
  6. 役に立たない「アートとしての科学」
  7. 化学のちからで抗体医薬を武装する
  8. 水素結合の発見者は誰?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 世界のエリートが今一番入りたい大学 ミネルバ
  2. 化学構造式描画のスタンダードを学ぼう!【基本編】
  3. 夏のお肌に。ファンデーションの化学
  4. 第107回―「ソフトマター表面の物理化学」Jacob Klein教授
  5. アルミニウムで水素分子を活性化する
  6. 化学のあるある誤変換
  7. 三菱ケミカル「レイヨン」買収へ
  8. プリリツェフ エポキシ化 Prilezhaev Epoxidation
  9. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売
  10. 極小の「分子ペンチ」開発

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編

前回の化学研究で役に立つデータ解析入門:回帰分析の応用編では、Rを使ってエクセルにはできない回帰分析…

いろんなカタチの撹拌子を試してみた

大好評、「試してみた」シリーズの第5弾。今回は様々な化合物を反応させる際に必須な撹拌子(回転…

【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントは、医薬分野向けに事業・開発課題のソリューションとして、マイクロ波の適用例や効…

バイオマスからブタジエンを生成する新技術を共同開発

日本ゼオンは、理研、横浜ゴムと共同で設置している「バイオモノマー生産研究チーム」の研究により、バイオ…

【ケムステSlackに訊いてみた②】化学者に数学は必要なのか?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

電子のやり取りでアセンの分子構造を巧みに制御

第308回のスポットライトリサーチは、北海道大学大学院総合化学院(鈴木研究室)・張本 尚さんにお願い…

第147回―「カリックスアレーンを用いる集合体の創製」Tony Coleman教授

第147回の海外化学者インタビューは、アンソニー・W・コールマン(通称トニー)教授です。フランスのリ…

ノーコードでM5Stack室内環境モニターを作ろう

COVID-19の影響で居室や実験室の換気状況を見直された方は多いと思います。化学系の実験室は定期的…

Chem-Station Twitter

PAGE TOP