[スポンサーリンク]

O

四酸化オスミウム Osmium Tetroxide (OsO4)

概要

触媒量の四酸化オスミウムと再酸化剤共存下、アルケンをcisvic-ジオールへと変換する反応。きわめて穏和に進行するうえ、他の試薬では実現しにくい変換でもあるため、オスミウムの高価さにもかかわらず頻繁に用いられる条件である。

アセトン/水、もしくはt-BuOH/水の混合溶媒系が多用されている。

再酸化剤としては、固体で取り扱い容易なN-メチルモルホリンオキシド(NMO)がもっともよく用いられる(Upjohn法)。他にはトリメチルアミンオキシド(Me3NO)、t-BuOOH(Milas法)、OsCl3-K3Fe(CN)6なども用いられる。

過ヨウ素酸ナトリウム(NaIO4)を再酸化剤として用いれば、生成するジオールを系中で連続的に酸化的開裂できる。この場合、生成物はカルボニル化合物となる(Lemieux-Johnson酸化)。

ピリジンなどの配位性アミンを共存させることで反応が加速される。

メタンスルホニルアミド(MsNH2)の添加も反応加速効果がある(オスメートエスエルの加水分解を促進するとされている)、

キニーネ/キニジン由来の不斉配位子を併用すれば、不斉ジヒドロキシル化も可能である(SharplessAD)。

基本文献

<review>

  • Cha, J. K.; Kim, N.-S. Chem. Rev. 1995, 95, 1761. DOI: 10.1021/cr00038a003
  • Eames, J.; Mitchell, H.; Nelson, A.; O’Brien, P.; Warren, S.; Wyatt, P. J. Chem. Soc. Perkin Trans. 1 1999, 1095. doi:10.1039/a900277d
  •  Francais, A.; Bedel, O.; Haudrechy, A. Tetrahedron 2008, 64, 2495. doi:10.1016/j.tet.2007.11.068

反応機構

四酸化オスミウムはオレフィンに[3+2]付加を起こし、オスメートエステル中間体を与える。触媒回転させるには、オスメートエステルが加水分解される必要がある。このため、通常含水系で反応が行われる。この加水分解が触媒系の律速段階となっている。
OsO4_2.gif

反応例

  • 過ヨウ素酸ナトリウムを再酸化剤として用いると、ワンポットでアルケンの開裂が起こせる。2,6-ルチジンを共存させておくことで副反応が防げる。[1]


OsO4_5.gif

  • クロラミン-Tなどを共存させておくと、アミノヒドロキシル化を起こすことも可能である。[2]


OsO4_6.gif

  • スルホニルオキシカルバメートを用いるアミノ基の分子内導入を行った例。[3]


OsO4_4.gif

  • 分子内にアルコールが存在する基質の場合、酸化的環化反応が進行する。[4]


OsO4_3.gif

  • フェニルボロン酸存在下で反応を行うと、反応性が劇的に改善されるとともに、ジオールをフェニルホウ酸エステルとして単離可能[5a]。また生じたアルコールの酸化による副反応を防ぐことができる。さらに、通常の条件に加えてジアステレオ選択性が変化する場合がある[5b]

以下は奈良坂変法をSordarinの合成へと適用した例である[6]。

OsO4_8.gif

  • TMEDA配位子の電子供与性により、化合物のヒドロキシル基などの極性官能基と水素結合を形成しやすくなり、極性官能基側からよりジヒドロキシ化が進行するといわれている(Donohoe変法)[7]

実験手順

シクロヘキセンのジヒドロキシル化[8]


OsO4_7.gif

実験のコツ・テクニック

マイクロカプセル化四酸化オスミウムは、揮発性が無く濾過によって回収再利用も可能であるため、大変扱いやすい。本試薬は和光純薬工業より市販されている。[9]

※四酸化オスミウムは揮発性であり毒性が強いため、反応はドラフト中で行うこと。

参考文献

  1. ] Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217. DOI: 10.1021/ol0400342
  2. Sharpless, K. B.; Chong, A. O.; O’Shima, K. J. Org. Chem. 1976, 41, 177. DOI: 10.1021/jo00863a052
  3. Donohoe, T. J.; Chughtai, M. J.; Klauber, D. J.; Griffin, D.; Campbell, A. D. J. Am. Chem. Soc. 2006, 128, 2514. DOI: 10.1021/ja057389g
  4. (a) Donohoe, T. J.; Harris, R. M.; Burrows, J.; Parker, J. J. Am. Chem. Soc. 2006, 128, 13704. DOI: 10.1021/ja0660148 (b) Donohoe, T. J.; Wheelhouse, K. M. P.; Lindsay-Scott,P. J.; Churchill, G. H.; Connolly, M. J.; Butterworth, S.; Glossop, P. A. Chem. Asian. J. 2009, 4, 1237. DOI: 10.1002/asia.200900168
  5. (a) Iwasawa, N.; Kato, T.; Narasaka, K. Chem. Lett. 1988, 1721. doi:10.1246/cl.1988.1721 (b) Gypser, A.; Michel, D.; Nirschl, D. S.; Sharpless, K. B. J. Org. Chem. 1998, 63, 7322. DOI:10.1021/jo980850l
  6. Chiba, S.; Kitamura, M.; Narasaka, K. J. Am. Chem. Soc. 2006, 128, 6931. DOI: 10.1021/ja060408h
  7. (a) Donohoe, T. J.; Moore, P. R.; Waring, M. J.; Newcombe, N. J. Tetrahedron Lett. 199738, 5027. (b) Donohoe, T. J.; Mitchell, L.; Waring, M. J.; Helliwell, M.; Bell, A.; Newcombe, N. J. Tetrahedron Lett200142, 8951.
  8. VanRheenen, V.; Kelly R. C.; Cha, D. Y. Terahedron Lett. 1976, 1973. doi:10.1016/S0040-4039(00)78093-2
  9. (a) Nagayama, S.; Endo, M.; Kobayashi, S. J. Org. Chem. 1998, 63, 6094. DOI: 10.1021/jo981127y (b) Kobayashi, S.; Endo, M.; Nagayama, S. J. Am. Chem. Soc. 1999, 121, 11229. DOI: 10.1021/ja993099m

関連反応

関連書籍

 

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. 福山還元反応 Fukuyama Reduction
  2. 野依不斉水素移動反応 Noyori Asymmetric Tra…
  3. フォルスター・デッカー アミン合成 Forster-Decker…
  4. 脱酸素的フッ素化 Deoxofluorination
  5. アルキンジッパー反応 Alkyne Zipper Reacito…
  6. トロスト酸化 Trost Oxidation
  7. マクミラン触媒 MacMillan’s Cataly…
  8. カチオン重合 Cationic Polymerization

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. OMCOS19に参加しよう!
  2. 「携帯」の電池で電車走る・福井大などが実験に成功
  3. ヘキサン (hexane)
  4. 混合原子価による芳香族性
  5. クロスカップリング反応ーChemical Times特集より
  6. ボロン酸MIDAエステル MIDA boronate
  7. “結び目”をストッパーに使ったロタキサンの形成
  8. マイクロリアクターによる合成技術【終了】
  9. アメリカ化学留学 ”立志編 ー留学の種類ー”!
  10. ジェイ・キースリング Jay Keasling

関連商品

注目情報

注目情報

最新記事

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す

イナミドと光学活性なアルケニルスルホキシドから、2位および3位に置換基をもつ1,4-ジカルボニル骨格…

サッカーボール型タンパク質ナノ粒子TIP60の設計と構築

第163回目のスポットライトリサーチは、慶應義塾大学理工学部 ・川上了史(かわかみ のりふみ)講師に…

PAGE TOP