[スポンサーリンク]

化学者のつぶやき

エナンチオ選択的ジフルオロアルキルブロミド合成

[スポンサーリンク]

ブロモ基の転位を伴うアルケニルブロミドの不斉αジフルオロ化反応が開発された。本反応により生成する含フッ素キラルアルキルブロミドの医農薬品合成への利用が期待される。

ジフルオロメチレン基とアルケンのジフルオロ化反応

ジフルオロメタンは、種々のフルオロメタンの中で最も双極子モーメントが大きい。そのためジフルオロメチレン基の導入により、化合物の極性向上と粘性の低下が期待できる。さらに、ジフルオロメチレン基をもつ化合物は、他の含フッ素化合物と同様に高い代謝安定性や脂溶性を有する。以上から、ジフルオロメチレン基は医農薬開発において近年注目を集めている。
これまでこの官能基の導入法として、アルケンのジフルオロ化反応が知られている。例えば2014年Szabóらは、超原子価ヨウ素試薬と化学量論量の銀塩による、スチレンのβ位ジフルオロ化反応を報告した(図 1A)[1]。また、2016年ハーバード大学のJacobsenらは、キラルヨードアレーン触媒を用いることで、アルケンからα位への不斉誘導を伴い、β,β-ジフルオロ化体を合成した(図 1B)[2]。これらのジフルオロ化体は、フェノニウムイオン中間体を経て得られる。さらに本反応において、α位にiPr基をもつアミドを基質とすると、カルボニルからの求核攻撃により、異なる中間体を経たa,b-ジフルオロ化体が生成する。
今回、Jacobsenとユタ大学のSigmanらは、アルケニルブロミドを用いることで、フェノニウムイオン中間体ではなく、ブロモニウムイオン中間体を経て同様の反応が進行し、キラルなジフルオロアルキルブロミドが得られることを見いだした(図 1C)。さらに、本反応における触媒と基質間に働く非共有結合性相互作用(noncovalent interaction: NCI)を調査することで、本反応のエナンチオ選択性発現の遷移状態構造について推測した。

図1. (A)スチレンのジフルオロ化反応、 (B)触媒的不斉ジフルオロ化反応、(C) 今回の反応

 

“Catalytic Enantioselective Synthesis of Difluorinated Alkyl Bromides”

Levin, M. D.; Ovian, J. M.; Read, J. A.; Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2020, 142, 14831–14837.

DOI: 10.1021/jacs.0c07043

 

論文著者の紹介

研究者: Matthew S. Sigman (研究室HP)
研究者の経歴:
–1992 B.S., Sonoma State University, USA (Prof. M. E. Wright)
1992–1996 Ph.D., Washington State University, USA (Prof. B. E. Eaton)
1996–1999 Postdoc, Harvard University, USA (Prof. E. N. Jacobsen)
1999–2004 Assistant Professor, Utah University, USA
2004–2008 Associate Professor, Utah University, USA
2008–2012 Professor, Utah University, USA
2012– Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry, Utah University, USA
研究内容: 物理化学的パラメータを通じた不斉触媒の迅速最適化・機構解析

研究者: Eric N. Jacobsen ( 研究室HP)
研究者の経歴:
–1982 B.S., New York University, USA (Prof. Y. E. Rhodes)
1982–1986 Ph.D., University of California, Barkley, USA (Prof. R. G. Bergman)
1986–1988 Postdoc, Massachusetts Institute of Technology, USA (Prof. K. B. Sharpless)
1988–1991 Assistant Professor, University of Illinois at Urbana-Champaign, USA
1991–1993 Associate Professor, University of Illinois at Urbana-Champaign, USA
1993– Professor, Harvard University, USA
研究内容:新規不斉触媒反応の開発

論文の概要

本反応はジクロロメタン溶媒中、ヨードアレーン触媒1存在下、種々のアルケニルブロミド2に対しオラー試薬(pyridine·9HF)とmCPBAを作用させることでジフルオロ化体3を与える(図2A)。本反応は、芳香環上に電子求引基をもつスチレンで進行し(3a,3b)、遊離のアルコール(3c)や一級アルキルブロミド(3d)を損なわずに進行する(図2C)。さらにヘテロ芳香環をもつ化合物(3e)にも適用可能である。また本反応の触媒は、そのベンジルエステル部位がブロモニウムイオン中間体に求核攻撃することで失活する。そのため、ベンジルエステルの芳香環に電子求引基として–SF5基を導入することでカルボニルの求核性を抑え、触媒の失活を抑制した。
著者らは、反応点から離れたベンジル基上の置換基によってエナンチオ選択性が変化したことから、NCIが関与していると考えた。
そこで、エナンチオ選択性と触媒や基質の種々のパラメーターとの間の直線エネルギー関係(linear free energy relationship: LFER)を調査することで、NCIを解析した。すなわち、対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT)を用いて、様々な相互作用エネルギーとエナンチオ選択性の相関を調査した。その結果、触媒のベンジル基とプローブ分子がもつC–H結合とのCH–π相互作用とエナンチオ選択性に良い相関が見られた(図 2C)。同様に基質がもつ芳香環のLUMOのエネルギーとエナンチオ選択性に相関が確認された(図 2D)。以上から、基質と触媒はCH–π、およびπ–π相互作用によって遷移状態を安定化し、エナンチオ選択性を発現したと推測される(図 2E)。

図2. (A)最適条件、(B)基質適用範囲、(C)CH–π相互作用エネルギーとエナンチオ選択性、(D)LUMOのエナルギーとエナンチオ選択性E) エナンチオ選択性発現の遷移状態構造

 

以上、α-アルケニルブロミドから含フッ素キラルアルキルブロミドの合成法が開発された。エナンチオ選択性の発現機構については未だ解明できていないものの、ヨードアレーン触媒のさらなる活性や安定性の向上が期待される。

参考文献

  1. Ilchenko, N. O.; Tasch, B. O. A.; Szabó, K. J. Mild Silver-Mediated Geminal Difluorination of Styrenes Using an Air- and Moisture-Stable Fluoroiodane Reagent. Angew. Chem., Int. Ed. 2014, 53, 12897–12901. DOI: 10.1002/anie.201408812
  2. Banik, S. M.; Medley, J. W.; Jacobsen, E. M. Catalytic, Asymmetric Difluorination of Alkenes to Generate Difluoromethylated Stereocenters. Science 2016, 353, 51–54. DOI: 1126/science.aaf8078
  3. (a) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem Rev. 1994, 94, 1887–1930. DOI: 10.1021/cr00031a008 (b) Gonthier, J. F.; Sherrill, C. D. Density-Fitted Open-Shell Symmetry-Adapted Perturbation Theory and Application to π-Stacking in Benzene Dimer Cation and Ionized DNA Base Pair Steps. J. Chem. Phys. 2016, 145, 134106. DOI: 10.1063/1.4963385

用語説明

・対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT): 摂動論の一種。非共有結合性相互作用におけるエネルギーの成分を解析する上で最もポピュラーな手法の一つである。本手法を用いることで相互作用エネルギーを正確に算出できる。

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第36回ケムステVシンポ「光化学最前線2023」を開催します!
  2. 私が思う化学史上最大の成果-2
  3. 化学Webギャラリー@Flickr 【Part1】
  4. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾…
  5. カルボン酸からハロゲン化合物を不斉合成する
  6. MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2
  7. 有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャー…
  8. ナイトレン

注目情報

ピックアップ記事

  1. 有用な β-アミノ酸の新規合成法を開拓! 理論・合成・プロセスの3段階アプローチ
  2. 大麻から作られる医薬品がアメリカでオーファンドラッグとして認証へ
  3. 明るい未来へ~有機薄膜太陽電池でエネルギー変換効率7.4%~
  4. 塩野義製薬/米クレストール訴訟、控訴審でも勝訴
  5. 高活性な不斉求核有機触媒の創製
  6. アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)
  7. “呼吸するセラミックス” を使った酸素ガス分離・製造
  8. 「薬草、信じて使うこと」=自分に合ったものを選ぶ
  9. コンプラナジンAの全合成
  10. 化学者がコンピューター計算を行うべきか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP