[スポンサーリンク]

化学者のつぶやき

エナンチオ選択的ジフルオロアルキルブロミド合成

[スポンサーリンク]

ブロモ基の転位を伴うアルケニルブロミドの不斉αジフルオロ化反応が開発された。本反応により生成する含フッ素キラルアルキルブロミドの医農薬品合成への利用が期待される。

ジフルオロメチレン基とアルケンのジフルオロ化反応

ジフルオロメタンは、種々のフルオロメタンの中で最も双極子モーメントが大きい。そのためジフルオロメチレン基の導入により、化合物の極性向上と粘性の低下が期待できる。さらに、ジフルオロメチレン基をもつ化合物は、他の含フッ素化合物と同様に高い代謝安定性や脂溶性を有する。以上から、ジフルオロメチレン基は医農薬開発において近年注目を集めている。
これまでこの官能基の導入法として、アルケンのジフルオロ化反応が知られている。例えば2014年Szabóらは、超原子価ヨウ素試薬と化学量論量の銀塩による、スチレンのβ位ジフルオロ化反応を報告した(図 1A)[1]。また、2016年ハーバード大学のJacobsenらは、キラルヨードアレーン触媒を用いることで、アルケンからα位への不斉誘導を伴い、β,β-ジフルオロ化体を合成した(図 1B)[2]。これらのジフルオロ化体は、フェノニウムイオン中間体を経て得られる。さらに本反応において、α位にiPr基をもつアミドを基質とすると、カルボニルからの求核攻撃により、異なる中間体を経たa,b-ジフルオロ化体が生成する。
今回、Jacobsenとユタ大学のSigmanらは、アルケニルブロミドを用いることで、フェノニウムイオン中間体ではなく、ブロモニウムイオン中間体を経て同様の反応が進行し、キラルなジフルオロアルキルブロミドが得られることを見いだした(図 1C)。さらに、本反応における触媒と基質間に働く非共有結合性相互作用(noncovalent interaction: NCI)を調査することで、本反応のエナンチオ選択性発現の遷移状態構造について推測した。

図1. (A)スチレンのジフルオロ化反応、 (B)触媒的不斉ジフルオロ化反応、(C) 今回の反応

 

“Catalytic Enantioselective Synthesis of Difluorinated Alkyl Bromides”

Levin, M. D.; Ovian, J. M.; Read, J. A.; Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2020, 142, 14831–14837.

DOI: 10.1021/jacs.0c07043

 

論文著者の紹介

研究者: Matthew S. Sigman (研究室HP)
研究者の経歴:
–1992 B.S., Sonoma State University, USA (Prof. M. E. Wright)
1992–1996 Ph.D., Washington State University, USA (Prof. B. E. Eaton)
1996–1999 Postdoc, Harvard University, USA (Prof. E. N. Jacobsen)
1999–2004 Assistant Professor, Utah University, USA
2004–2008 Associate Professor, Utah University, USA
2008–2012 Professor, Utah University, USA
2012– Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry, Utah University, USA
研究内容: 物理化学的パラメータを通じた不斉触媒の迅速最適化・機構解析

研究者: Eric N. Jacobsen ( 研究室HP)
研究者の経歴:
–1982 B.S., New York University, USA (Prof. Y. E. Rhodes)
1982–1986 Ph.D., University of California, Barkley, USA (Prof. R. G. Bergman)
1986–1988 Postdoc, Massachusetts Institute of Technology, USA (Prof. K. B. Sharpless)
1988–1991 Assistant Professor, University of Illinois at Urbana-Champaign, USA
1991–1993 Associate Professor, University of Illinois at Urbana-Champaign, USA
1993– Professor, Harvard University, USA
研究内容:新規不斉触媒反応の開発

論文の概要

本反応はジクロロメタン溶媒中、ヨードアレーン触媒1存在下、種々のアルケニルブロミド2に対しオラー試薬(pyridine·9HF)とmCPBAを作用させることでジフルオロ化体3を与える(図2A)。本反応は、芳香環上に電子求引基をもつスチレンで進行し(3a,3b)、遊離のアルコール(3c)や一級アルキルブロミド(3d)を損なわずに進行する(図2C)。さらにヘテロ芳香環をもつ化合物(3e)にも適用可能である。また本反応の触媒は、そのベンジルエステル部位がブロモニウムイオン中間体に求核攻撃することで失活する。そのため、ベンジルエステルの芳香環に電子求引基として–SF5基を導入することでカルボニルの求核性を抑え、触媒の失活を抑制した。
著者らは、反応点から離れたベンジル基上の置換基によってエナンチオ選択性が変化したことから、NCIが関与していると考えた。
そこで、エナンチオ選択性と触媒や基質の種々のパラメーターとの間の直線エネルギー関係(linear free energy relationship: LFER)を調査することで、NCIを解析した。すなわち、対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT)を用いて、様々な相互作用エネルギーとエナンチオ選択性の相関を調査した。その結果、触媒のベンジル基とプローブ分子がもつC–H結合とのCH–π相互作用とエナンチオ選択性に良い相関が見られた(図 2C)。同様に基質がもつ芳香環のLUMOのエネルギーとエナンチオ選択性に相関が確認された(図 2D)。以上から、基質と触媒はCH–π、およびπ–π相互作用によって遷移状態を安定化し、エナンチオ選択性を発現したと推測される(図 2E)。

図2. (A)最適条件、(B)基質適用範囲、(C)CH–π相互作用エネルギーとエナンチオ選択性、(D)LUMOのエナルギーとエナンチオ選択性E) エナンチオ選択性発現の遷移状態構造

 

以上、α-アルケニルブロミドから含フッ素キラルアルキルブロミドの合成法が開発された。エナンチオ選択性の発現機構については未だ解明できていないものの、ヨードアレーン触媒のさらなる活性や安定性の向上が期待される。

参考文献

  1. Ilchenko, N. O.; Tasch, B. O. A.; Szabó, K. J. Mild Silver-Mediated Geminal Difluorination of Styrenes Using an Air- and Moisture-Stable Fluoroiodane Reagent. Angew. Chem., Int. Ed. 2014, 53, 12897–12901. DOI: 10.1002/anie.201408812
  2. Banik, S. M.; Medley, J. W.; Jacobsen, E. M. Catalytic, Asymmetric Difluorination of Alkenes to Generate Difluoromethylated Stereocenters. Science 2016, 353, 51–54. DOI: 1126/science.aaf8078
  3. (a) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem Rev. 1994, 94, 1887–1930. DOI: 10.1021/cr00031a008 (b) Gonthier, J. F.; Sherrill, C. D. Density-Fitted Open-Shell Symmetry-Adapted Perturbation Theory and Application to π-Stacking in Benzene Dimer Cation and Ionized DNA Base Pair Steps. J. Chem. Phys. 2016, 145, 134106. DOI: 10.1063/1.4963385

用語説明

・対称性適応摂動理論(Symmetry-adapted perturbation theory: SAPT): 摂動論の一種。非共有結合性相互作用におけるエネルギーの成分を解析する上で最もポピュラーな手法の一つである。本手法を用いることで相互作用エネルギーを正確に算出できる。

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発
  2. 648個の誘導体を合成!ペプチド創薬の新手法を開発
  3. 配位子を着せ替え!?クロースカップリング反応
  4. 単一細胞レベルで集団を解析
  5. 特長のある豊富な設備:ライトケミカル工業
  6. “click”の先に
  7. 小型質量分析装置expression® CMSを試してみた
  8. オープンアクセス論文が半数突破か

注目情報

ピックアップ記事

  1. 研究職の転職で求められる「面白い人材」
  2. 「アバスチン」臨床試験中間解析を公表 中外製薬
  3. 小松 徹 Tohru Komatsu
  4. セミナーチャンネルを開設
  5. サクラの酵母で作った赤い日本酒を商品化に成功
  6. 第100回有機合成シンポジウム記念特別講演会に行ってきました
  7. 光照射による有機酸/塩基の発生法:②光塩基発生剤について
  8. 9‐Dechlorochrysophaentin Aの合成と細胞壁合成阻害活性の評価
  9. 2011年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  10. アトムエコノミー Atom Economy

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP