[スポンサーリンク]

ケムステニュース

カチオン中間体の反応に新展開をもたらす新規フロー反応装置の開発

[スポンサーリンク]

京都大学大学院工学研究科の永木愛一郎 准教授、宅見正浩 同研究員、阪上穂高 同修士課程学生らの研究グループは、世界に先駆けてわずか数秒での電気分解が可能な新規フロー反応装置の開発に成功し、医薬品およびその他有用な化合物の迅速合成を達成しました。 (引用:京都大学プレスリリース1月5日)

京都大学より短時間の電気分解でカチオン種を発生させて、基質と反応させる新規フロー反応装置開発の研究成果が発表されましたので紹介させていただきます。

研究の背景ですが、カチオンやアニオンといった不安定な中間体は、強力で用途が広い化学種として合成化学では認識されており、この発生や反応をコントロールすることで現在でも新たな反応が報告されています。一方、フラッシュケミストリーは、マイクロリアクターを用いてフロー型の系内で不安定な化学種を発生させ、そこに基質を投入して即座に反応させる方法のことを指し、バッチタイプの合成方法では達成できなかった反応を収率よく進行させることに成功しています。

フラッシュケミストリーでの反応例(出典:Benzyllithiums bearing aldehyde carbonyl groups. A flash chemistry approach

一方、電気化学も活性な化学種を発生させる方法として研究が進められており、電気化学においては反応基質を使うより反応が極めてシンプルであることと電子移動が二つの電極で行われて不可逆な変換をもたらすのが強みであり、様々な研究成果が報告されています。しかしながら、バッチによる電気化学反応装置では装置の関係上、短い時間で寿命の短い中間体を発生させて反応させることは原理的に難しいとされています。

電解合成におけるプロセスとパラメータ(出典:Electrifying Organic Synthesis

そんな中、電気化学とフローケミストリーを組み合わせた装置で反応効率を向上させた例がいくつか報告されています。この方法においても多くのケースで、フローレートを遅くしたり、チャンネルの長さを長くしたり基質をリサイクルしたりしていて、電気分解の時間を稼ぐためにフローケミストリーの効率を落とす必要があります。

電気化学とフローケミストリーを組み合わせた装置での反応例と条件ごとの収率の違い(出典:Development and Assembly of a Flow Cell for Single-Pass Continuous Electroorganic Synthesis Using Laser-Cut Components

このような状況の中、本研究では数秒で電気分解が終わるような反応装置の開発を行い、電気化学的な酸化反応によってカルボカチオンを発生させて、それが分解する前に求核剤と反応させることを目指しました。

本研究で使用した実験装置は下の図であり、原料が電解槽を通過すると陽極酸化によってカルボカチオンに変化し、次のポイントで反応剤が投入されて生成物が発生します。電解質はBu4NBF4が使われ、電気分解を促進させるために電解槽の陰極にはTfOHの溶液が流されました。実験としては最初にフローチャンネルの最適化を行いました。電解槽のチャンネルを太くして電極も大きくするとフローレートを上げても目的物の収率を維持でき、フローチャンネルの体積とフローレートから計算される電解時間において3秒での反応の成功しました。

実験装置図、原料と反応剤は論文終盤に登場する医薬品合成のデモの場合であり実験条件のた草では、2-((4-Fluorophenyl)thio)tetrahydrofuranからカチオン種を精製させ1-phenyl-1-(trimethylsilyloxy)ethyleneを作用させている。また電解槽の陰極にはTfOHの溶液が流されている。(出典:京都大学プレスリリース

次に、フローレートと反応温度を変えて収率を比較しました。カチオン発生にかかる時間が長いと、反応温度を上げていくとカチオンの安定性の影響で収率は低下しますが、発生にかかる時間が短いと、反応温度を上げても収率が変化せず、5秒以下の発生時間(フローレートが7 mL/minの時)では0℃の反応温度でも高い収率が示されました。

条件検討で行った反応、Ar=p-FC6H4

 

Flow rateが高いほど発生にかかる時間は短いことになる

さらに基質を変えてバッチでの反応と収率を比較しました。フローでは概ね高い収率が示されましたが、バッチでは示された反応の収率は低く、本研究の方法の優位性が示されました。特に、Boc基を持つN-acyliminiumイオンは、電気生成された酸によって容易に分解されるものの、本研究の電気分解フローでは求核剤と反応して目的生成物が高い収率で得られました。

バッチ条件との収率の比較の一部、求核剤は1-phenyl-1-(trimethylsilyloxy)ethylene

さらに不安定なカチオンについても実験が行われ、目的の生成物が高い収率で得られることが確認されました。グリコールからグリコシルカチオンを発生させる先行研究は、酸化剤を使った場合ではいくつか報告されているものの電気化学では報告が無く、本研究の手法では、求核剤との反応で目的の反応物を得ることに成功しています。

基質を変えた反応の結果の一部

最後に医薬品合成のデモとしてリタリン前駆体の合成を行いました。一時間の反応で83%の収率で2.3gの目的物が得られました。反応自体の完結は19秒のみ必要ということで、必要なタイミングで必要な分だけ合成することができる技術になるとコメントされています。

リタリン前駆体の合成(出典:京都大学プレスリリース

まとめとして著者らは数秒で電気分解で寿命が短いカルボカチオンを発生させ、分解する前に求核剤と反応できるフロー電気化学リアクターの開発に成功しました。このシステムにより医薬品の合成に必要な前駆体を必要な分だけ迅速に合成できるとしています。

電気化学とフラッシュケミストリーの組み合わせにより、安定に存在できないカチオンを発生させて、なおかつ求核剤との反応で目的物を収率よく得られたことは、大きな成果だと思います。中間体の取り扱いは難しく、不安定な状態だと分解してしまい、逆に安定になりすぎると目的の反応が進行しない場合もありますので、シンプルな系でカチオンへの求核反応が進行している点は大変興味深いです。サポーティングインフォメーションには器具の写真が掲載されていますが、電気分解槽はオリジナルの装置のようで、研究室でのノウハウの蓄積があると予想されます。この手法を応用してより様々なカチオンを生成させ、それを反応へ応用する研究が発展することを期待します。

論文の冒頭には、「In memory of Professor Jun-ichi Yoshida」とこの分野で著名な業績を残し、2019年に亡くなられた吉田潤一京都大学名誉教授を追悼するメッセージが加えられています。

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率…
  2. 製薬会社5年後の行方
  3. 性フェロモン感じる遺伝子、ガで初発見…京大グループ
  4. インフルエンザ治療薬「CS‐8958」、09年度中にも国内申請へ…
  5. 有機化合物合成中に発火、理化学研が半焼--仙台 /宮城
  6. 新たな青色発光素子 京大化学研教授ら発見
  7. 酸素ボンベ爆発、男性死亡 
  8. 114番元素と116番元素が正式認可される

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻– (実践編)
  2. CEMS Topical Meeting Online 機能性材料の励起状態化学
  3. フラーレンが水素化触媒に???
  4. ショウリョウバッタが吐くアレについて
  5. Carl Boschの人生 その1
  6. とある農薬のはなし「クロロタロニル」について 
  7. お茶の水女子大学と奈良女子大学がタッグを組む!
  8. ティシチェンコ反応 Tishchenko Reaction
  9. 進化する カップリング反応と 応用展開
  10. 金属-金属結合をもつ二核ランタノイド錯体 -単分子磁石の記録を次々に更新-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

注目情報

最新記事

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第446回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP