[スポンサーリンク]

ケムステニュース

カチオン中間体の反応に新展開をもたらす新規フロー反応装置の開発

[スポンサーリンク]

京都大学大学院工学研究科の永木愛一郎 准教授、宅見正浩 同研究員、阪上穂高 同修士課程学生らの研究グループは、世界に先駆けてわずか数秒での電気分解が可能な新規フロー反応装置の開発に成功し、医薬品およびその他有用な化合物の迅速合成を達成しました。 (引用:京都大学プレスリリース1月5日)

京都大学より短時間の電気分解でカチオン種を発生させて、基質と反応させる新規フロー反応装置開発の研究成果が発表されましたので紹介させていただきます。

研究の背景ですが、カチオンやアニオンといった不安定な中間体は、強力で用途が広い化学種として合成化学では認識されており、この発生や反応をコントロールすることで現在でも新たな反応が報告されています。一方、フラッシュケミストリーは、マイクロリアクターを用いてフロー型の系内で不安定な化学種を発生させ、そこに基質を投入して即座に反応させる方法のことを指し、バッチタイプの合成方法では達成できなかった反応を収率よく進行させることに成功しています。

フラッシュケミストリーでの反応例(出典:Benzyllithiums bearing aldehyde carbonyl groups. A flash chemistry approach

一方、電気化学も活性な化学種を発生させる方法として研究が進められており、電気化学においては反応基質を使うより反応が極めてシンプルであることと電子移動が二つの電極で行われて不可逆な変換をもたらすのが強みであり、様々な研究成果が報告されています。しかしながら、バッチによる電気化学反応装置では装置の関係上、短い時間で寿命の短い中間体を発生させて反応させることは原理的に難しいとされています。

電解合成におけるプロセスとパラメータ(出典:Electrifying Organic Synthesis

そんな中、電気化学とフローケミストリーを組み合わせた装置で反応効率を向上させた例がいくつか報告されています。この方法においても多くのケースで、フローレートを遅くしたり、チャンネルの長さを長くしたり基質をリサイクルしたりしていて、電気分解の時間を稼ぐためにフローケミストリーの効率を落とす必要があります。

電気化学とフローケミストリーを組み合わせた装置での反応例と条件ごとの収率の違い(出典:Development and Assembly of a Flow Cell for Single-Pass Continuous Electroorganic Synthesis Using Laser-Cut Components

このような状況の中、本研究では数秒で電気分解が終わるような反応装置の開発を行い、電気化学的な酸化反応によってカルボカチオンを発生させて、それが分解する前に求核剤と反応させることを目指しました。

本研究で使用した実験装置は下の図であり、原料が電解槽を通過すると陽極酸化によってカルボカチオンに変化し、次のポイントで反応剤が投入されて生成物が発生します。電解質はBu4NBF4が使われ、電気分解を促進させるために電解槽の陰極にはTfOHの溶液が流されました。実験としては最初にフローチャンネルの最適化を行いました。電解槽のチャンネルを太くして電極も大きくするとフローレートを上げても目的物の収率を維持でき、フローチャンネルの体積とフローレートから計算される電解時間において3秒での反応の成功しました。

実験装置図、原料と反応剤は論文終盤に登場する医薬品合成のデモの場合であり実験条件のた草では、2-((4-Fluorophenyl)thio)tetrahydrofuranからカチオン種を精製させ1-phenyl-1-(trimethylsilyloxy)ethyleneを作用させている。また電解槽の陰極にはTfOHの溶液が流されている。(出典:京都大学プレスリリース

次に、フローレートと反応温度を変えて収率を比較しました。カチオン発生にかかる時間が長いと、反応温度を上げていくとカチオンの安定性の影響で収率は低下しますが、発生にかかる時間が短いと、反応温度を上げても収率が変化せず、5秒以下の発生時間(フローレートが7 mL/minの時)では0℃の反応温度でも高い収率が示されました。

条件検討で行った反応、Ar=p-FC6H4

 

Flow rateが高いほど発生にかかる時間は短いことになる

さらに基質を変えてバッチでの反応と収率を比較しました。フローでは概ね高い収率が示されましたが、バッチでは示された反応の収率は低く、本研究の方法の優位性が示されました。特に、Boc基を持つN-acyliminiumイオンは、電気生成された酸によって容易に分解されるものの、本研究の電気分解フローでは求核剤と反応して目的生成物が高い収率で得られました。

バッチ条件との収率の比較の一部、求核剤は1-phenyl-1-(trimethylsilyloxy)ethylene

さらに不安定なカチオンについても実験が行われ、目的の生成物が高い収率で得られることが確認されました。グリコールからグリコシルカチオンを発生させる先行研究は、酸化剤を使った場合ではいくつか報告されているものの電気化学では報告が無く、本研究の手法では、求核剤との反応で目的の反応物を得ることに成功しています。

基質を変えた反応の結果の一部

最後に医薬品合成のデモとしてリタリン前駆体の合成を行いました。一時間の反応で83%の収率で2.3gの目的物が得られました。反応自体の完結は19秒のみ必要ということで、必要なタイミングで必要な分だけ合成することができる技術になるとコメントされています。

リタリン前駆体の合成(出典:京都大学プレスリリース

まとめとして著者らは数秒で電気分解で寿命が短いカルボカチオンを発生させ、分解する前に求核剤と反応できるフロー電気化学リアクターの開発に成功しました。このシステムにより医薬品の合成に必要な前駆体を必要な分だけ迅速に合成できるとしています。

電気化学とフラッシュケミストリーの組み合わせにより、安定に存在できないカチオンを発生させて、なおかつ求核剤との反応で目的物を収率よく得られたことは、大きな成果だと思います。中間体の取り扱いは難しく、不安定な状態だと分解してしまい、逆に安定になりすぎると目的の反応が進行しない場合もありますので、シンプルな系でカチオンへの求核反応が進行している点は大変興味深いです。サポーティングインフォメーションには器具の写真が掲載されていますが、電気分解槽はオリジナルの装置のようで、研究室でのノウハウの蓄積があると予想されます。この手法を応用してより様々なカチオンを生成させ、それを反応へ応用する研究が発展することを期待します。

論文の冒頭には、「In memory of Professor Jun-ichi Yoshida」とこの分野で著名な業績を残し、2019年に亡くなられた吉田潤一京都大学名誉教授を追悼するメッセージが加えられています。

関連書籍

[amazonjs asin=”4807909924″ locale=”JP” title=”有機合成のためのフロー化学”] [amazonjs asin=”4781316158″ locale=”JP” title=”フローマイクロ合成の最新動向 (ファインケミカルシリーズ)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 非選択性茎葉処理除草剤の『ザクサ液剤』を登録申請
  2. 女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイ…
  3. 北大触媒化研、水素製造コスト2―3割安く
  4. 世界医薬大手の05年売上高、欧州勢伸び米苦戦・武田14位
  5. 緑茶成分テアニンに抗ストレス作用、太陽化学、名大が確認
  6. ヘリウム不足再び?
  7. 水素水業界、国民生活センターと全面対決 「断じて納得できません」…
  8. オカモトが過去最高益を記録

注目情報

ピックアップ記事

  1. チャン転位(Chan Rearrangement)
  2. 【11/20~22】第41回メディシナルケミストリーシンポジウム@京都
  3. 住友化学が通期予想据え置き、カギ握る情報電子化学の回復
  4. 酵素触媒反応の生成速度を考える―ミカエリス・メンテン機構―
  5. トシルヒドラゾンとボロン酸の還元的カップリング反応とその応用展開
  6. N末端選択的タンパク質修飾反応 N-Terminus Selective Protein Modification
  7. ヒューマンエラーを防ぐ知恵 増補版: ミスはなくなるか
  8. 産総研で加速する電子材料開発
  9. 酸化亜鉛を用い青色ダイオード 東北大開発 コスト減期待
  10. ハワイ州で日焼け止め成分に規制

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP