[スポンサーリンク]

化学者のつぶやき

チオカルバマートを用いたCOSのケミカルバイオロジー

[スポンサーリンク]

チオカルバマート型硫化水素ドナー分子を用いた硫化カルボニル(COS)の生理学的機能の研究が行われた。COSが量依存的な細胞毒性を示すことが明らかとなった。

硫化水素と硫化カルボニル(COS)

硫化水素(H2S)はガス状シグナル伝達物質の一つであり、体内にてイオンチャネルの制御や心血管の保護などの重要な機能を担う(1)。そのため、硫化水素のもつ生理機能の解明や疾患治療への利用を目的とした研究が盛んに行われている。この研究ツールとして、気体で取り扱いが困難な硫化水素に代わり、局所投与や投与濃度のコントロールが容易な「H2Sドナー小分子」が用いられてきた。その一つに、チオカルバマート型ドナー分子がある(1)。この分子は保護部位、リンカー部位およびCOS担持部位からなり、自己分解により生じる硫化カルボニル(COS)を経由して、細胞系中でH2Sを発生させるCOSH2Sへの変換は細胞中に含まれる脱酸脱水酵素(CA)の役割である。今回の著者であるオレゴン大学のPluth准教授らは、エステラーゼによる加水分解を起点とした、自己分解及びCOS生成を経由するH2Sドナー分子(チオカルバマート型ドナー分子)を開発している(1A)(2)。この研究にて、COSがミトコンドリアの呼吸を阻害することで、細胞毒性を示すことが示唆された。COSは細胞系中では速やかに分解されるためその性質を調べるのは困難であったが、当該研究はこのH2Sドナー分子がCOSの生理学的機能を調べる上で新たな研究ツールとなりうる可能性を提示した。

 今回著者らはCOSが細胞毒性を有することを踏まえ、チオカルバマート型ドナー分子のCOS生成速度の違いが細胞毒性に与える影響を調査した(1B)。エステル部位の嵩高さ及び芳香環の電子状態をパラメータに設定し、COSの生成速度を変化させた種々の誘導体を合成した。エステルの加水分解及び自己分解が速く進行する分子は、COSの生成速度がCAによる分解速度を上回り、COSが細胞内に蓄積する。そのため、COS生成が遅い誘導体よりも強い細胞毒性を示すことが予想される。

図1. (A)エステラーゼを起点としたCOS/H2Sドナー (B)今回の内容

 

Esterase-Triggered Self-Immolative Thiocarbamates Insight into COS Cytotoxicity

Levinn, C. M.; Steiger, A. K.; Pluth, M. D. ACS Chem. Biol.2019, 14, 170.

DOI: 10.1021/acschembio.8b00981

論文著者の紹介

研究者:Mike Pluth

研究者の経歴:
-2004 B.S., University of Oregon, USA
2005-2008 Ph.D., University of California Berkeley, USA (Prof. Robert G. Bergman and Kenneth N. Raymond)
2008-2011 Posdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
2011-2016 Assistant Prof. at University of Oregon, USA
2016-  Associate Prof. at University of Oregon, USA
2018-  Assistant Vice President for Research. at University of Oregon, USA
研究内容:COSH2Sのケミカルバイオロジー

論文の概要

著者らはまずチオカルバマート型ドナー分子エステル部位の嵩高さが異なる誘導体を合成後、エステル部位がH2S発生速度にどのような影響を与えるかを調べた(2A(i))。エステラーゼ及びカタラーゼ存在下にてチオカルバマート分子を作用させ、H2Sプローブを用いてH2S発生量を測定した(2A(ii))。その結果、ナフチル基等の嵩高い置換基を導入した誘導体は、シクロプロピル基等の小さな置換基を導入した場合よりもH2Sの発生速度が低下した。この原因として嵩高い置換基がエステラーゼによる加水分解の反応速度の低下を引き起こし、COSひいてはH2S発生速度が減少したことが考えられる。この結果より、小さな置換基をもつ誘導体はCOS生成速度が速く、細胞中にてCOSの蓄積が増加するため、より強い毒性を示すと予想された。そこで、これらの誘導体を細胞へ投与し細胞毒性を測定したところ、実際にメチル基等の小さな置換基をもつ誘導体は嵩高い置換基をもつものよりも強い毒性を示した(2A(iii))。これよりCOSは量依存的な細胞毒性を示すと判明した。

 続いてアニリンの芳香環部位の電子状態が異なる種々の誘導体を合成し、まず上述の2種の酵素存在下でH2Sの生成速度を比較した(2B(i))。強い電子供与性のフェニル基や求引性のニトロ基を導入した場合、H2Sの生成速度が低下した(2B(ii))。これより電子供与能ないし求引能が大きい置換基を導入した場合、COSの生成速度が低下すると予測された。続いてこれらの誘導体の細胞毒性を測定したところ、電子供与能ないし求引能が強い置換基を導入した場合は毒性が低下する傾向が見られた(2B(iii))。著者らはH2S/COSの生成速度と置換基効果の関係を次のように考察している。強い電子供与性置換基を導入した場合、アニリン部位の脱離能が低くなり、自己分解速度が低下する(C)。また、強い電子求引性置換基を導入した場合、酸性度が上昇したアミドのN–Hの脱プロトンに続くイソチオシアネート生成後、遅い加水分解を受けてCOSを生成する経路が優先する(C)(3)

図2. (A)エステル部位の嵩高さの影響 (B)芳香環の電子状態の影響 (C)置換基効果とCOS生成速度の関係

 

以上、COSの蓄積が細胞毒性を示すことが示された。本研究をきっかけとしてCOSの生理学的機能についてさらなる研究が行われるのが待たれる。

参考文献

  1. Powell, C. R.; Dillon, K. M.; Matson, J. B. Pharmacol. 2018, 149, 110. DOI: 10.1016/j.bcp.2017.11.014.
  2. Steiger, A. K.; Marcatti, M.; Szabo, C.; Szczesny, B.; Pluth, M. D. ACS Chem. Biol.2017, 12, 2117. DOI: 1021/acschembio.7b00279.
  3. Zhao, Y.; Henthorn, H. A.; Pluth, M. D. J. Am. Chem. Soc.2017, 139, 16365. DOI: 10.1021/jacs.7b09527.
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. C-H活性化触媒を用いる(+)-リゾスペルミン酸の収束的合成
  2. 中高生・高専生でも研究が学べる!サイエンスメンタープログラム
  3. 研究者向けプロフィールサービス徹底比較!
  4. 文献管理ソフトを徹底比較!
  5. Carl Boschの人生 その4
  6. 香りの化学2
  7. 大学生向け”オイシイ”情報の集め方
  8. “結び目”をストッパーに使ったロタキサンの形成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機化合物のスペクトルによる同定法―MS,IR,NMRの併用 (第7版)
  2. 理系が文系よりおしゃれ?
  3. 不斉Corey-Chaykovskyエポキシド合成を鍵としたキニーネ・キニジンの選択的合成
  4. 保護により不斉を創る
  5. デヴィッド・エヴァンス David A. Evans
  6. フィンランド理科教科書 化学編
  7. 超若手科学者の発表会、サイエンス・インカレの優秀者インタビュー
  8. 有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発
  9. 酸素と水分をW保証!最高クラスの溶媒:脱酸素脱水溶媒
  10. ボールペンなどのグリップのはなし

関連商品

注目情報

注目情報

最新記事

リチウム金属電池の寿命を短くしている原因を研究者が突き止める

リチウムリオンバッテリー(リチウムイオン二次電池)はPCやスマートフォンなどの電子機器に利用されてい…

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

Chem-Station Twitter

PAGE TOP