[スポンサーリンク]

chemglossary

分子モーター Molecular Motor

[スポンサーリンク]

分子モーター(Molecular Motor)は、分子機械(分子レベルの機械装置・究極のナノテクノロジー)における素子の一つです。モーター機能を単一分子(もしくは複数分子の複合体)の分子で実現してしまおう、というものです。


人工的にはロタキサン・カテナンなどの超分子骨格を用いて研究されることが多いですが、動力学機構を実際に備えたものはほとんど報告がありません。

 冒頭の図でも示されている、オレフィン架橋型ヘリセン分子は、オランダ・グローニンゲン大学のBen Feringaによって1999年に開発されました。[1] 熱/光のエネルギーを周期的にかけてやることで一方向にだけ回転するという、ユニークな特性を持ちます。

Feringa_motor_1.gif

 東北大の原田宜之らは、世界で始めて動力機構を備えた光動力分子モーターの構築に成功しています。これは、オレフィンのシスートランス光異性化を回転の動力源とし、ツメ歯車効果、モーター分子のキラリティの特性を生かしたものです。

 一方で、生物界で知られるたんぱく質・RNAでできた分子の中には、モーター挙動を示すものが知られています。

 ATP合成酵素(ATP synthase)は、アデノシン三リン酸(ATP)を分解・消費して上にくっついたF1部位を回転させることが実験的に観測されています。[2] ATPを燃料とした分子モーターというわけです。

ATPsynthase

 では逆に、これを人力的に回してやればどうなるでしょうか?なんと、これによってATPが化学合成されてくるそうです(!)。モーターに対する”発電機”の関係と同じというわけですね。これを実証せしめた[3]のは日本人研究者です。こんなミクロな世界にまで人工物と自然のアナロジーが観られるというのは、本当に面白いですね。

関連文献

[1] “Light-driven monodirectional molecular rotor”

Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152. DOI: 10.1038/43646

Attempts to fabricate mechanical devices on the molecular level1, 2have yielded analogues of rotors3, gears4, switches5, shuttles6, 7, turnstiles8 and ratchets9. Molecular motors, however, have not yet been made, even though they are common in biological systems10. Rotary motion as such has been induced in interlocked systems11, 12, 13 and directly visualized for single molecules14, but the controlled conversion of energy into unidirectional rotary motion has remained difficult to achieve. Here we report repetitive, monodirectional rotation around a central carbon–carbon double bond in a chiral, helical alkene, with each 360° rotation involving four discrete isomerization steps activated by ultraviolet light or a change in the temperature of the system. We find that axial chirality and the presence of two chiral centres are essential for the observed monodirectional behaviour of the molecular motor. Two light-induced cis-trans isomerizations are each associated with a 180° rotation around the carbon–carbon double bond and are each followed by thermally controlled helicity inversions, which effectively block reverse rotation and thus ensure that the four individual steps add up to one full rotation in one direction only. As the energy barriers of the helicity inversion steps can be adjusted by structural modifications, chiral alkenes based on our system may find use as basic components for ‘molecular machinery’ driven by light.

[2] “Direct observation of the rotation of F1-ATPase”

Noji, H.; Yasuda, R.; Yoshida, M.; Kinoshita, K. Nature 1997, 286, 299. DOI: 10.1038/386299a0

Cells employ a variety of linear motors, such as myosin1–3, kinesin4 and RNA polymerase5, which move along and exert force on a filamentous structure. But only one rotary motor has been investigated in detail, the bacterial flagellum6 (a complex of about 100 protein molecules7). We now show that a single molecule of F1-ATPase acts as a rotary motor, the smallest known, by direct observation of its motion. A central rotor of radius ~1 nm, formed by its γ-subunit, turns in a stator barrel of radius ~5nm formed by three α– and three β-subunits8. F1 ATPase, together with the membrane-embedded proton-conducting unit F0, forms the H+-ATP synthase that reversibly couples transmembrane proton flow to ATP synthesis/hydrolysis in respiring and photosynthetic cells9,10. It has been suggested that the γ-subunit of F1-ATPase rotates within the αβ-hexamer11, a conjecture supported by structural8, biochemical12,13 and spectroscopic14 studies. We attached a fluorescent actin filament to the γ-subunit as a marker, which enabled us to observe this motion directly. In the presence of ATP, the filament rotated for more than 100 revolutions in an anticlockwise direction when viewed from the ‘membrane’ side. The rotary torque produced reached more than 40 pN nm −l under high load.

[3] “Mechanically driven ATP synthesis by F1-ATPase”

Itoh, H.; Takahashi, A.; Adachi, K.; Noji, H.; Yasuda, R.; Yoshida, M.; Kinoshita, K. Nature 2004, 427, 465.  DOI:10.1038/nature02212

ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction1, 2, 3. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its γ-subunit rotates4against the surrounding α3β3 subunits5, hydrolysing ATP in three separate catalytic sites on the β-subunits. It is widely believed that reverse rotation of the γ-subunit, driven by proton flow through the associated Fo portion of ATP synthase, leads to ATP synthesis in biological systems1, 2, 3, 6, 7. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the γ-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase–luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.

関連書籍

関連リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 多重薬理 Polypharmacology
  2. クロスカップリング反応 cross coupling react…
  3. コンビナトリアル化学 Combinatorial Chemis…
  4. 全合成 total synthesis
  5. 抗体-薬物複合体 Antibody-Drug Conjugate…
  6. 重医薬品(重水素化医薬品、heavy drug)
  7. トリメチルロック trimethyl lock
  8. 徹底比較 特許と論文の違い ~明細書、審査編~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 免疫系に捕そくされない超微粒子の薬剤
  2. 【ケムステSlackに訊いてみた③】化学で美しいと思うことを教えて!
  3. 第5回慶應有機化学若手シンポジウム
  4. ベンゼン環を壊す“アレノフィル”
  5. 米ブリストル、仏サノフィの買収提案に備え助言契約締結
  6. 規則的に固定したモノマーをつないで高分子を合成する
  7. ベンジル保護基 Benzyl (Bn) Protective Group
  8. メチオニン選択的なタンパク質修飾反応
  9. ジャネット・M・ガルシア Jeannette M. Garcia
  10. デスソース

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

高分子固体電解質をAIで自動設計

第406回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山…

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!

こんにちは、今回第28回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

量子アルゴリズム国際ハッカソンQPARC Challengeで、で京都大学の学生チームが優勝!!

そこかしこで「量子コンピュータ」という言葉を聞くようになった昨今ですが、実際に何がどこまでできるのか…

Nature主催の動画コンペ「Science in Shorts」に応募してみました

以前のケムステ記事で、Springer Nature社が独・メルク社と共同で、動画コンペ「Scien…

クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発見―薬剤耐性菌の出現を抑える感染症治療薬への応用に期待―

第405回のスポットライトリサーチは、広島大学大学院統合生命科学研究科 生物工学プログラム 細胞機能…

【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編

今年4月に発売された書籍で、発売記念著者インタビュー動画も発売前に撮影したのですが、書籍の到…

Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~

第404回のスポットライトリサーチは、北海道大学 大学院薬学研究院 天然物化学研究室の有馬 陸(あり…

化学企業のグローバル・トップ50が発表【2022年版】

The world’s chemical industry didn’t just gr…

常温常圧アンモニア合成~20年かけて性能が約10000倍に!!!

Tshozoです。先日ChemRxivに、東京大学西林研究室による最新の触媒成果が発表されました…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP