[スポンサーリンク]

スポットライトリサーチ

分子間相互作用によりお椀反転の遷移状態を安定化する

[スポンサーリンク]

第435回のスポットライトリサーチは、名古屋大学大学院工学研究科 忍久保研究室に在籍されていた川島 寛之(かわしま ひろゆき)さんにお願いしました。

忍久保研究室は、

  • 新規有機π電子化合物の創成と物性・機能の探求
  • π共役有機分子の新奇現象の創出と解明
  • 電子材料や医療への応用を目指したπ電子化合物の構造制御と機能開拓
  • 生体機能を模倣した遷移金属錯体触媒の設計と小分子活性化反応の開発

を掲げ、分子の物性や機能を開花させるための研究を行っています。本プレスリリースの研究成果は、お椀型の曲面π共役分子についてです。お椀型のπ共役分子は平面構造を経て高速に反転運動することが知られていましたが、この平面構造は遷移状態で不安定であり、それを観測することは困難でした。本研究グループでは、ポルフィリンの一種であるノルコロールという反芳香族分子の白金錯体を合成し、この錯体が溶液中ではお椀型構造をもつことを明らかにしました。一方、固体中では三つの錯体が積み重なることで、中央に挟まれた分子が平面構造に変形することを発見し、それが分子間に働く相互作用によって安定化されていることを解明しました。

この研究成果は、「Cell Reports Physical Science」誌およびプレスリリースに公開されています。

Planarization of a Bowl-Shaped Molecule by Triple-Decker Stacking

Hiroyuki Kawashima, Norihito Fukui, Quan Manh Phung, Takeshi Yanai, and Hiroshi Shinokubo

Volume 3, Issue 9, 21 September 2022, 101045

DOI: doi.org/10.1016/j.xcrp.2022.101045

研究室を主宰されている忍久保 洋 教授より川島さんについてコメントを頂戴いたしました!

川島君は、余計なことは喋らない寡黙な「いぶし銀」という感じの人物です。実験結果についても自分からはあまりアピールしないのですが、独自に深く考えて研究を進めていて、気が付くと「おっ!」という結果を持ってきてくれました(例えば、J. Am. Chem. Soc. 2021, 143, 10676)。ディスカッションの時は、結果についてよく考察していて、感心する時がしばしばありました。ノルコロール白金錯体については、僕自身はパラジウム錯体と大体同じであろうとたかをくくっており、驚くような結果が得られると思っていませんでした。しかし、平面構造をサンドイッチした結晶構造を見たときには腰を抜かしました。川島君はいい意味でマイペースに研究を進めていましたね。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

ノルコロールはポルフィリンに似た分子ですが、炭素が2つ少ないため16π共役系となり反芳香族性を示します。また、4つの窒素に囲まれた空孔のサイズはポルフィリンよりも小さく、挿入できた元素はニッケル、銅、パラジウム、リンに限られていました。ニッケル錯体は、Ni(II)が空孔サイズにフィットするため、高い平面性を示します。このため、積層しやすく、積層芳香族性を示します(新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次元芳香族性の発現~)。一方、パラジウム錯体は、Pd(II)のイオン半径が大きいためお椀型構造をとり、積層しないことが分かっていました。

今回の研究は、ノルコロールの白金錯体に関するものです。Pt(II)が大きいため、やはりお椀型構造をとることが分かりました。ここまでは予想通りです。しかし、別の再結晶化の条件を試したところ、平面構造をお椀型構造でサンドイッチした構造をとることが明らかになりました。名古屋大学理学研究科のフン先生との共同研究でDFT計算を用いて解析した結果、分子間の分散力と白金間の引力的な相互作用が、このような特異な構造を安定化したことが分かりました。平面構造はお椀反転運動の遷移状態に対応しており、通常では観測できない遷移状態を安定化して取り出すことができたことになります。

お椀反転の動画

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私が行なっていた別のテーマ (J. Am. Chem. Soc. 2021, 143, 10676)で、結晶構造が判明してから研究が大きく展開したということがあったので、今回の研究でも単結晶構造解析には思い入れがありました。先に結晶構造が判明していたノルコロールパラジウム錯体は、お椀型分子でしたが期待したような積層構造はみられませんでした。イオン半径から考えて、白金錯体も同じ構造であろうことは予想に難くありませんでした。しかし、構造解析の時に3つの白金原子が結ばれた初期構造が出て、その予想はいい意味で裏切られました。さらに、はじめは解析データの質が悪かったので、何度も解析に挑戦しました。これにより、積層構造が再現性のある構造であることも分かり、この分子に対しての興味がさらに深まりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

想定していないところで、ノルコロールの周辺置換基の違いによる反応性の違いに悩まされました。本研究は、新しい中心原子をもつノルコロールを合成し、その構造と物性を評価したいということを動機としていました。ノルコロール中心にニッケル以外の金属を入れるためには無金属体が必要です。過去にメシチル基をもつ無金属ノルコロールの合成法が報告されていましたが、違う置換基の場合には全く目的化合物が得られず、金属を入れる以前の段階で壁にぶつかりました。しかし、研究室メンバーと意見交換したり、副生成物を調べたりしながら良い条件を探索することで、目的物質を得る方法にたどり着くことができました。金属錯化の過程での副生成物もしっかり分析して、個人的にも面白いと思える化合物が得られたテーマでした。

Q4. 将来は化学とどう関わっていきたいですか?

2021年に修士課程を修了後就職し、現在は有機化学とはかけ離れた分野での業務を行なっています。化学にとどまらずバックグラウンドが異なる人が職員や利用者として集まる職場では、異分野を扱っていても、ふとした時に化学の知識が役に立つときがあります。今後は、化学に直接関わることもあるかもしれませんが、そうでなくても化学を含めた広い視点で見ることができる者として、これまで身につけた化学的な知識・技術と併せてこれからの学びを社会に還元していけるようになりたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究で想定通りの結果が得られなくても、粘り強さや偶然によってその結果から想定外の発見を見いだせることがあるかもしれません。さらに、その経験は、今回の研究で早々に分子を諦めてしまわなかったように、以後の研究や仕事で新しい発見を見落とさないための機会を与えてくれるものになると思います。

最後になりましたが、共同研究でお世話になりました、名古屋大学のフン クアン先生、柳井毅先生にはこの場を借りて御礼申し上げます。また、ご指導いただいた研究室のスタッフの先生方や大学での研究生活や様々な出来事を共にした研究室の皆さんに、深く感謝申し上げます。

研究者の略歴

名前:川島 寛之(かわしま ひろゆき)

所属:名古屋市役所

経歴:

2019年3月 名古屋大学 工学部 化学・生物工学科卒業

2021年3月 名古屋大学大学院 工学研究科 有機・高分子化学専攻 修士課程修了

2021年4月~現在 名古屋市役所勤務

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. iPhone/iPod Touchで使える化学アプリ-ケーション…
  2. 2010年ノーベル化学賞予想―トムソン・ロイター版
  3. 機械学習用のデータがない?計算機上で集めませんか。データ駆動型イ…
  4. 栄養素取込、ミトコンドリア、菌学術セミナー 主催:同仁化学研究所…
  5. 有機合成化学協会誌2021年1月号:コロナウイルス・脱ニトロ型カ…
  6. 化学のあるある誤変換
  7. sp2-カルボカチオンを用いた炭化水素アリール化
  8. 【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直…

注目情報

ピックアップ記事

  1. “アルデヒドを移し替える”新しいオレフィン合成法
  2. 「溶融炭酸塩基の脱プロトン化で有用物質をつくる」スタンフォード大学・Kanan研より
  3. ADC薬 応用編:捨てられたきた天然物は宝の山?・タンパクも有機化学の領域に!
  4. マテリアルズ・インフォマティクスにおける回帰手法の基礎
  5. 海外のインターンに参加してみよう
  6. アルコールを空気で酸化する!
  7. ウーロン茶の中でも医薬品の化学合成が可能に
  8. ケムステしごと企業まとめ
  9. 21世紀に入り「世界同時多発研究」は増加傾向に
  10. as well asの使い方

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP