[スポンサーリンク]

化学者のつぶやき

スルホニルアミノ酸を含むペプチドフォルダマーの創製

[スポンサーリンク]

南フロリダ大学・Jianfeng Caiらのグループは、L-アミノ酸とD-sulfono-γ-AApeptideの2:1繰り返し構造が特異な右巻きらせん構造を取ることを報告した。

“Right-Handed Helical Foldamers Consisting of De Novo D-AApeptides”
Teng, P.; Ma, N.; Cerrato, D. C.; She, F.; Odom, T.; Wang, X.; Ming, L.-J.; van der Vaart, A.; Wojtas, L.; Xu, H.*; Cai, J.* J. Am. Chem. Soc. 2017, 139, 7363–7369. DOI: 10.1021/jacs.7b03007 (冒頭図は論文より引用)

問題設定と解決した点

3次元構造を持つペプチドはタンパク質や膜分子に作用し、医薬・材料方面での利用が期待されている。中でもらせん状に折りたたまれたペプチドフォルダマーはこのような働きに加えて、膜内に入り込みチャネルとして機能できる可能性がある。

らせんを形作るペプチドの一つとして、L体・D体の両方のアミノ酸を交互に含むペプチドが挙げられる。そのような例としてはグラミシジンAやoligo-L-Val-D-Val peptideなどが知られるが報告例は少なく、らせん方向などの予測が困難であった。

著者らはらせん状ペプチドフォルダマーを新たに合成することでこのような化合物の知見を増やすとともに、生体分子模倣ペプチドの拡充を目指している。

技術・手法のキモ

著者らはペプチド核酸(PNA)から着想を得て設計されたAApeptide (N-acetylated-N-aminoethyl peptide)の3級アミド部分をスルホンアミドにする(Sulfono-AApeptide)ことで、アミドのシス/トランスによる影響をなくすとともに、立体障害を増大させてらせんを作りやすくする[1]ことを期待した。


主張の有効性検証

著者らはこれまでに、L-sulfono-γ-AApeptideのみのらせん[1]と α-アミノ酸とL-sulfono-γ-AA peptideの1:1複合のらせんフォルダマーを合成していた[2]。今回の論文ではα-アミノ酸:D-sulfono-γ-AApeptide=2:1でらせんフォルダマーを形成できることを示している。

具体的には、L-Ala、L-Phe、4-chlorobenzenesulfonyl-D-sulfono-γ-AA残基でペプチドを作り、単結晶X線構造解析を行うことで、冒頭図の様ならせん構造が作られていることを確認している。

誘導体の構造解析より、以下のことが明らかになっている。

  • 長いペプチドほどらせんを形成しやすい。
  • どの鎖長のものも右巻きである。半径2.6Å、一巻き4.5残基、5.1Å。π-へリックスに近い構造をとる。
  • 16-16-14の水素結合形成パターンを取る。
  • 側鎖は軸に対して外側を向いている。官能基の表面提示に有効な骨格である。
  • 各結合のねじれ角が特徴的。Ala部分はαへリックスに近くPhe部分はβシートに近い。D-sulfono-γ-AA残基部分はどれともつかない角度を取る。
  • トリフルオロエタノール中でのCDスペクトルより、温度・濃度変化にらせん構造は安定であることが示されている。
  • 分子動力学シミュレーションにより得られたらせん構造の妥当性が示されている。
  • スルホンアミドフェニル基上の置換基やα-アミノ酸部位を各々変更しても、らせん構造を取り得ることがNOE解析(CD3OH中)によって示唆されている。

議論すべき点

  • 官能基の一般性および安定性を兼ね備える、D-sulfono-γ-AA残基という特殊アミノ酸を含む、πへリックスという特異な構造を取る、側鎖は外を向いていてその向きに方向性がある、などの特性があるため、医薬分子や膜人工チャネル分子として組み込める可能性が十分あると考えられる。
  • 末端近傍のらせん構造は若干崩れやすい平衡にあるので改善は必要か。
  • D-sulfono-γ-AA残基は固相合成できる。Pd還元が必要なのが難である。

次に読むべき論文は?

  • Poly‐Aibペプチドでらせんを作り、膜に組み込んでイオン透過能を計測している論文[3]。鎖長によってイオン取り込み能が変わっている。膜に組み込むにはどのような特性がいるのか。N、C末端にどのようなキャップ構造を付ければよいか。膜貫通に必要な鎖長、チャネルを作る穴の大きさetc…などのヒントになるか?

参考文献

  1. Wu, H.; Qiao, Q.; Hu, Y.; Teng, P.; Gao, W.; Zuo, X.; Wojtas, L.; Larsen, R. W.; Ma, S.; Cai, J. Chem. Eur. J. 2015, 21, 2501. DOI: 10.1002/chem.201406112
  2. Wu, H.; Qiao, Q.; Teng, P.; Hu, Y.; Antoniadis, D.; Zuo, X.; Cai, J.  Org. Lett. 2015, 17, 3524. DOI: 10.1021/acs.orglett.5b01608
  3. Jones, J. E.; Diemer, V.; Adam, C.; Raftery, J.; Ruscoe, R. E.;  Sengel, J. T.; Wallace, M. I.; Bader, A.; Cockroft, S. L.; Clayden, J.;  Webb, S. J. J. Am. Chem. Soc. 2016, 138, 688. DOI: 10.1021/jacs.5b12057

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 研究テーマ変更奮闘記 – PhD留学(後編)
  2. 反応機構を書いてみよう!~電子の矢印講座・その2~
  3. 人生、宇宙、命名の答え
  4. 群ってなに?【化学者だって数学するっつーの!】
  5. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  6. ビシナルジハライドテルペノイドの高効率全合成
  7. 化学者のためのエレクトロニクス講座~電解パラジウムめっき編~
  8. Carl Boschの人生 その1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 投票!2016年ノーベル化学賞は誰の手に??
  2. 酸窒化物合成の最前線:低温合成法の開発
  3. 沖縄科学技術大学院大学(OIST) 教員公募
  4. ノーベル街道起点
  5. グリニャール反応 Grignard Reaction
  6. 理研、放射性同位体アスタチンの大量製造法を開発
  7. 大日本インキが社名変更 来年4月1日から「DIC」に
  8. ロバート・グラブス Robert H. Grubbs
  9. 大学入試のあれこれ ①
  10. 有機超伝導候補が室温超高速光応答材料に変身

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP