[スポンサーリンク]

化学者のつぶやき

スルホニルアミノ酸を含むペプチドフォルダマーの創製

南フロリダ大学・Jianfeng Caiらのグループは、L-アミノ酸とD-sulfono-γ-AApeptideの2:1繰り返し構造が特異な右巻きらせん構造を取ることを報告した。

“Right-Handed Helical Foldamers Consisting of De Novo D-AApeptides”
Teng, P.; Ma, N.; Cerrato, D. C.; She, F.; Odom, T.; Wang, X.; Ming, L.-J.; van der Vaart, A.; Wojtas, L.; Xu, H.*; Cai, J.* J. Am. Chem. Soc. 2017, 139, 7363–7369. DOI: 10.1021/jacs.7b03007 (冒頭図は論文より引用)

問題設定と解決した点

3次元構造を持つペプチドはタンパク質や膜分子に作用し、医薬・材料方面での利用が期待されている。中でもらせん状に折りたたまれたペプチドフォルダマーはこのような働きに加えて、膜内に入り込みチャネルとして機能できる可能性がある。

らせんを形作るペプチドの一つとして、L体・D体の両方のアミノ酸を交互に含むペプチドが挙げられる。そのような例としてはグラミシジンAやoligo-L-Val-D-Val peptideなどが知られるが報告例は少なく、らせん方向などの予測が困難であった。

著者らはらせん状ペプチドフォルダマーを新たに合成することでこのような化合物の知見を増やすとともに、生体分子模倣ペプチドの拡充を目指している。

技術・手法のキモ

著者らはペプチド核酸(PNA)から着想を得て設計されたAApeptide (N-acetylated-N-aminoethyl peptide)の3級アミド部分をスルホンアミドにする(Sulfono-AApeptide)ことで、アミドのシス/トランスによる影響をなくすとともに、立体障害を増大させてらせんを作りやすくする[1]ことを期待した。


主張の有効性検証

著者らはこれまでに、L-sulfono-γ-AApeptideのみのらせん[1]と α-アミノ酸とL-sulfono-γ-AA peptideの1:1複合のらせんフォルダマーを合成していた[2]。今回の論文ではα-アミノ酸:D-sulfono-γ-AApeptide=2:1でらせんフォルダマーを形成できることを示している。

具体的には、L-Ala、L-Phe、4-chlorobenzenesulfonyl-D-sulfono-γ-AA残基でペプチドを作り、単結晶X線構造解析を行うことで、冒頭図の様ならせん構造が作られていることを確認している。

誘導体の構造解析より、以下のことが明らかになっている。

  • 長いペプチドほどらせんを形成しやすい。
  • どの鎖長のものも右巻きである。半径2.6Å、一巻き4.5残基、5.1Å。π-へリックスに近い構造をとる。
  • 16-16-14の水素結合形成パターンを取る。
  • 側鎖は軸に対して外側を向いている。官能基の表面提示に有効な骨格である。
  • 各結合のねじれ角が特徴的。Ala部分はαへリックスに近くPhe部分はβシートに近い。D-sulfono-γ-AA残基部分はどれともつかない角度を取る。
  • トリフルオロエタノール中でのCDスペクトルより、温度・濃度変化にらせん構造は安定であることが示されている。
  • 分子動力学シミュレーションにより得られたらせん構造の妥当性が示されている。
  • スルホンアミドフェニル基上の置換基やα-アミノ酸部位を各々変更しても、らせん構造を取り得ることがNOE解析(CD3OH中)によって示唆されている。

議論すべき点

  • 官能基の一般性および安定性を兼ね備える、D-sulfono-γ-AA残基という特殊アミノ酸を含む、πへリックスという特異な構造を取る、側鎖は外を向いていてその向きに方向性がある、などの特性があるため、医薬分子や膜人工チャネル分子として組み込める可能性が十分あると考えられる。
  • 末端近傍のらせん構造は若干崩れやすい平衡にあるので改善は必要か。
  • D-sulfono-γ-AA残基は固相合成できる。Pd還元が必要なのが難である。

次に読むべき論文は?

  • Poly‐Aibペプチドでらせんを作り、膜に組み込んでイオン透過能を計測している論文[3]。鎖長によってイオン取り込み能が変わっている。膜に組み込むにはどのような特性がいるのか。N、C末端にどのようなキャップ構造を付ければよいか。膜貫通に必要な鎖長、チャネルを作る穴の大きさetc…などのヒントになるか?

参考文献

  1. Wu, H.; Qiao, Q.; Hu, Y.; Teng, P.; Gao, W.; Zuo, X.; Wojtas, L.; Larsen, R. W.; Ma, S.; Cai, J. Chem. Eur. J. 2015, 21, 2501. DOI: 10.1002/chem.201406112
  2. Wu, H.; Qiao, Q.; Teng, P.; Hu, Y.; Antoniadis, D.; Zuo, X.; Cai, J.  Org. Lett. 2015, 17, 3524. DOI: 10.1021/acs.orglett.5b01608
  3. Jones, J. E.; Diemer, V.; Adam, C.; Raftery, J.; Ruscoe, R. E.;  Sengel, J. T.; Wallace, M. I.; Bader, A.; Cockroft, S. L.; Clayden, J.;  Webb, S. J. J. Am. Chem. Soc. 2016, 138, 688. DOI: 10.1021/jacs.5b12057
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ルドルフ・クラウジウスのこと① エントロピー150周年を祝って
  2. 白リンを超分子ケージに閉じ込めて安定化!
  3. ニセ試薬のサプライチェーン
  4. 有機分子触媒ーChemical Times特集より
  5. 薬物耐性菌を学ぶーChemical Times特集より
  6. DNAに人工塩基対を組み入れる
  7. 年に一度の「事故」のおさらい
  8. ReaxysPrize2015ファイナリスト発表!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【読者特典】第92回日本化学会付設展示会を楽しもう!
  2. ジョージ・ホワイトサイズ George M. Whitesides
  3. Amazonを上手く使って書籍代を節約する方法
  4. ロナルド・ブレズロウ賞・受賞者一覧
  5. ここまで来たか、科学技術
  6. NHKアニメ『エレメントハンター』 2009年7月スタート!
  7. 水をヒドリド源としたカルボニル還元
  8. 環歪みを細胞取り込みに活かす
  9. 神戸製鋼所が特殊合金粉末を開発 金属以外の多様な材料にも抗菌性付加
  10. ウルツ反応 Wurtz Reaction

関連商品

注目情報

注目情報

最新記事

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

Chem-Station Twitter

PAGE TOP