[スポンサーリンク]

化学者のつぶやき

スルホニルアミノ酸を含むペプチドフォルダマーの創製

[スポンサーリンク]

南フロリダ大学・Jianfeng Caiらのグループは、L-アミノ酸とD-sulfono-γ-AApeptideの2:1繰り返し構造が特異な右巻きらせん構造を取ることを報告した。

“Right-Handed Helical Foldamers Consisting of De Novo D-AApeptides”
Teng, P.; Ma, N.; Cerrato, D. C.; She, F.; Odom, T.; Wang, X.; Ming, L.-J.; van der Vaart, A.; Wojtas, L.; Xu, H.*; Cai, J.* J. Am. Chem. Soc. 2017, 139, 7363–7369. DOI: 10.1021/jacs.7b03007 (冒頭図は論文より引用)

問題設定と解決した点

3次元構造を持つペプチドはタンパク質や膜分子に作用し、医薬・材料方面での利用が期待されている。中でもらせん状に折りたたまれたペプチドフォルダマーはこのような働きに加えて、膜内に入り込みチャネルとして機能できる可能性がある。

らせんを形作るペプチドの一つとして、L体・D体の両方のアミノ酸を交互に含むペプチドが挙げられる。そのような例としてはグラミシジンAやoligo-L-Val-D-Val peptideなどが知られるが報告例は少なく、らせん方向などの予測が困難であった。

著者らはらせん状ペプチドフォルダマーを新たに合成することでこのような化合物の知見を増やすとともに、生体分子模倣ペプチドの拡充を目指している。

技術・手法のキモ

著者らはペプチド核酸(PNA)から着想を得て設計されたAApeptide (N-acetylated-N-aminoethyl peptide)の3級アミド部分をスルホンアミドにする(Sulfono-AApeptide)ことで、アミドのシス/トランスによる影響をなくすとともに、立体障害を増大させてらせんを作りやすくする[1]ことを期待した。


主張の有効性検証

著者らはこれまでに、L-sulfono-γ-AApeptideのみのらせん[1]と α-アミノ酸とL-sulfono-γ-AA peptideの1:1複合のらせんフォルダマーを合成していた[2]。今回の論文ではα-アミノ酸:D-sulfono-γ-AApeptide=2:1でらせんフォルダマーを形成できることを示している。

具体的には、L-Ala、L-Phe、4-chlorobenzenesulfonyl-D-sulfono-γ-AA残基でペプチドを作り、単結晶X線構造解析を行うことで、冒頭図の様ならせん構造が作られていることを確認している。

誘導体の構造解析より、以下のことが明らかになっている。

  • 長いペプチドほどらせんを形成しやすい。
  • どの鎖長のものも右巻きである。半径2.6Å、一巻き4.5残基、5.1Å。π-へリックスに近い構造をとる。
  • 16-16-14の水素結合形成パターンを取る。
  • 側鎖は軸に対して外側を向いている。官能基の表面提示に有効な骨格である。
  • 各結合のねじれ角が特徴的。Ala部分はαへリックスに近くPhe部分はβシートに近い。D-sulfono-γ-AA残基部分はどれともつかない角度を取る。
  • トリフルオロエタノール中でのCDスペクトルより、温度・濃度変化にらせん構造は安定であることが示されている。
  • 分子動力学シミュレーションにより得られたらせん構造の妥当性が示されている。
  • スルホンアミドフェニル基上の置換基やα-アミノ酸部位を各々変更しても、らせん構造を取り得ることがNOE解析(CD3OH中)によって示唆されている。

議論すべき点

  • 官能基の一般性および安定性を兼ね備える、D-sulfono-γ-AA残基という特殊アミノ酸を含む、πへリックスという特異な構造を取る、側鎖は外を向いていてその向きに方向性がある、などの特性があるため、医薬分子や膜人工チャネル分子として組み込める可能性が十分あると考えられる。
  • 末端近傍のらせん構造は若干崩れやすい平衡にあるので改善は必要か。
  • D-sulfono-γ-AA残基は固相合成できる。Pd還元が必要なのが難である。

次に読むべき論文は?

  • Poly‐Aibペプチドでらせんを作り、膜に組み込んでイオン透過能を計測している論文[3]。鎖長によってイオン取り込み能が変わっている。膜に組み込むにはどのような特性がいるのか。N、C末端にどのようなキャップ構造を付ければよいか。膜貫通に必要な鎖長、チャネルを作る穴の大きさetc…などのヒントになるか?

参考文献

  1. Wu, H.; Qiao, Q.; Hu, Y.; Teng, P.; Gao, W.; Zuo, X.; Wojtas, L.; Larsen, R. W.; Ma, S.; Cai, J. Chem. Eur. J. 2015, 21, 2501. DOI: 10.1002/chem.201406112
  2. Wu, H.; Qiao, Q.; Teng, P.; Hu, Y.; Antoniadis, D.; Zuo, X.; Cai, J.  Org. Lett. 2015, 17, 3524. DOI: 10.1021/acs.orglett.5b01608
  3. Jones, J. E.; Diemer, V.; Adam, C.; Raftery, J.; Ruscoe, R. E.;  Sengel, J. T.; Wallace, M. I.; Bader, A.; Cockroft, S. L.; Clayden, J.;  Webb, S. J. J. Am. Chem. Soc. 2016, 138, 688. DOI: 10.1021/jacs.5b12057
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ニッケル錯体触媒の電子構造を可視化
  2. 混合原子価による芳香族性
  3. アジドの3つの窒素原子をすべて入れる
  4. 有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Ald…
  5. ナノチューブを簡単にそろえるの巻
  6. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…
  7. 大学院生のつぶやき:研究助成の採択率を考える
  8. 分子構造を 3D で観察しよう (3):新しい見せ方

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 酸で活性化された超原子価ヨウ素
  2. 炭素繊維は鉄とアルミに勝るか? 番外編 ~NEDOの成果について~
  3. NMR が、2016年度グッドデザイン賞を受賞
  4. 旭化成ファーマ、北海道に「コエンザイムQ10」の生産拠点を新設
  5. UCLA研究員死亡事故・その後
  6. エコエネルギー 家庭で競争
  7. Noah Z. Burns ノア・バーンズ
  8. 第28回光学活性化合物シンポジウム
  9. 世界の「イケメン人工分子」① ~ 分子ボロミアンリング ~
  10. 改正特許法が国会で成立

関連商品

注目情報

注目情報

最新記事

ペプチドの革新的合成

第215回のスポットライトリサーチは、中部大学総合工学研究所分子性触媒センター助教・村松渉先生にお願…

年収で内定受諾を決定する際のポイントとは

転職活動の終盤で複数の企業から内定を獲得した際、「年収が決め手となって内定を受諾…

安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結合の構造と性質

第214回のスポットライトリサーチは、東北大学大学院理学研究科化学専攻(岩本研究室)・小林 良さんに…

99.7%の精度で偽造ウイスキーを見抜ける「人工舌」が開発される

 まるで人間の舌のように偽造ウイスキーを見抜くことができる小型のセンサーが開発されました。このセンサ…

天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる?

第213回のスポットライトリサーチは、鳥取大学大学院 工学研究科・稲葉 央 助教にお願いしました。…

有機合成化学協会誌2019年8月号:パラジウム-フェナントロリン触媒系・環状カーボネート・素粒子・分子ジャイロコマ・テトラベンゾフルオレン・海洋マクロリド

有機合成化学協会が発行する有機合成化学協会誌、2019年8月号がオンライン公開されました。ひ…

Chem-Station Twitter

PAGE TOP