[スポンサーリンク]

一般的な話題

化学工業で活躍する有機電解合成

[スポンサーリンク]

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全に、なるべく特殊な条件を用いず、有害な廃棄物が生じない方法で合成を行うことが求められます。また、コスト面の制約から反応の収率向上により歩止まりを改善するのみならず、安価で安定供給可能な試薬・原料から出発する必要もあります。このように様々な制約に縛られる企業の研究開発ですが、その打開策の一つとして有機電解合成が存在感を高めています。

電解合成の利点のうち、代表的なものは以下の3つです。

①熱エネルギーのみでは進行しない反応を駆動可能

マクスウェル・ボルツマン分布より、粒子の平均エネルギーは3kBT/2で表されます。したがって、例えば3 evのエネルギーに相当する温度を求めるとT≈23000 Kとなり、乾電池2つ分程度の電位差で得られるエネルギーが、分子がプラズマ化するような温度に相当することがうかがえます。

これはあくまで単純計算ではありますが、熱エネルギーのみでは起こりえない電子遷移を進行させるうえで、電気化学的手法が適しているといえます(光反応も同様です)。

イメージ(画像:いらすとやより改変)

②極性変換が容易

通常、有機化学における極性変換(Umpolung)にはGrignard試薬に代表される有機金属試薬の調製や、近年発展の著しい有機金属化学においては遷移金属触媒の使用が広く行われています。これらのアプローチは極めて重要なもので、今後の進展も期待されますが、工業化する上では自然発火などの危険の高い有機金属試薬や、安定供給に難のある高価な貴金属の使用はなるべく回避したいものです。

電解合成には適用範囲の狭小さという課題もありますが、これらを用いることなく簡便に極性変換が可能であるという長所があります。

Grignard試薬(画像:Wikipedia

③電位など電解条件による選択性の発現

電解合成では電位に応じた高選択的な酸化・還元を行うことが可能で、通常の反応では合成困難な成績体を得ることも可能です。

特異な例では、基質の双極子モーメントを利用した選択的脱ハロゲン化なども報告されています。

以下ではこうした特長を有する有機電解合成のうち、工業化に成功した事例をかいつまんでご紹介していきます。

アクリロニトリルの選択的二量化によるアジポニトリルの合成

ナイロン6,6の合成の原料となるヘキサメチレンジアミンアジピン酸は、かつてはシクロヘキサンの触媒酸化を起点として合成されてきましたが、酸化反応の潜在的な危険性と工程の煩雑さが課題でした。両者はいずれもアジポニトリルの加水分解によって調製可能であり、そのアジポニトリルが安価なアクリロニトリルの二量体とみなせることに目を付けたMonsanto社(現 Bayer傘下)と旭化成は、アクリロニトリルの電解二量化によるアジポニトリルの工業生産法の開発にしのぎを削りました。

その結果、両者とも4級アンモニウム塩存在下で水に難溶性のアクリロニトリルを溶解/分散させて電解還元する手法に到達しました。この反応はカソード上でのプロトンの還元(HER; Hydrogen Evolution Reaction)と競合することから、HER過電圧の大きな電極材料の選択が重要であり、MonsantoはCd、旭化成はPbを用いた手法を確立しました。なお、アクリロニトリルの酸化電位は十分に正であることから、適切な条件を設定することでアノードでは水の酸化(OER; Oxygen Evolving Reaction)のみが進行します。

(画像:[1]

フタリド/芳香族アルデヒドの合成

植物保護剤、甲陵、紫外線吸収剤、めっき浴添加剤など多彩な用途に用いられるフタリドと4-tert-butylbenzaldehydeですが、BASF社は極めて無駄のない両極合成法を開発しました。

アノードでは4-tert-butyltolueneのベンジル側鎖が酸化されてアルデヒドのアセタールが、カソードではフタル酸ジメチルが還元されてフタリドが生じますが、両反応で消費/生成する電子数/プロトン数は完全に一致しており、さらに収率も約90%と極めて近い値となっています。その点で非常にエレガントな合成法といえます。

なお、BASFはほかにも、陽極酸化によるanisaldehydeやp-tolualdehydeの製造も行っています。

a

(画像:[2]

位置選択的脱ハロゲン化による3,6-ジクロロピコリン酸の合成

3,6-ジクロロピコリン酸は農薬の合成中間体として重要な化合物です。Daw Chemical社は3,4,5,6-テトラクロロピコリン酸の脱ハロゲン化による選択的合成の工業化を達成しました。化学的な還元では4-位、5-位のみの選択的な脱ハロゲン化は至難の業に見えますが、電解還元であれば可能です。

3,4,5,6-テトラクロロピコリン酸は電離状態において下図に示すような双極子モーメントを持っているため、カソードに対して4-位、5-位が接近するような配向状態を取ります。この状態で電子授受が行われることにより、これらの部位のみが特異的に還元され、所望の成績体のみを与えます[3]。電解における電場と表面反応という特性を十二分に生かした秀逸な手法ですね。

このほかにも、β-ラクタム系抗菌剤の一種、セファロスポリン系薬剤の合成中間体であるGCLEの合成にも電解反応が利用されています。大塚化学はアノード酸化を駆使してアリル位クロロ化を行い、選択的に目的物を生産しています[4]。

このように、電極反応でしか為しえない合成も数多くあり、工程の短縮やコストの低減に一役買っています。今後ますます化学工業における電解合成の存在感が高まっていくことも予想されます。

参考文献

  1. Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile, E. Blanco, A. Z. Dookhith and M. A. Modestino, React. Chem. Eng., 2019, 4, 8 DOI:10.1039/C8RE00262B
  2. [Aust N., Kirste A. (2014) Paired Electrosynthesis. In: Kreysa G., Ota K., Savinell R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-6996-5_370
  3. Ma, C. & Xu, Y. & Chu, Y. & Mao, X. & Zhao, F. & Zhu, Y.. (2010). Electrochemical synthesis of 3, 6-dichloropicolinic acid and its industrialization. Huagong Xuebao/CIESC Journal. 61. 699-703. https://www.researchgate.net/publication/289862479_Electrochemical_synthesis_of_3_6-dichloropicolinic_acid_and_its_industrialization
  4. 各種セファロスポリン抗生物質へ展開できる多目的中間体: 大塚化学

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. カチオン性三核Pd触媒でC–I結合選択的にカップリングする
  2. 研究者のためのCG作成術③(設定編)
  3. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポ…
  4. 炭素をつなげる王道反応:アルドール反応 (3)
  5. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会…
  6. 天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる…
  7. 人工DNAを複製可能な生物ができた!
  8. 【2021年卒業予定 修士1年生対象】企業での研究開発を知る講座…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 今年は共有結合100周年ールイスの構造式の物語
  2. 細胞を模倣したコンピューター制御可能なリアクター
  3. 耐薬品性デジタルマノメーター:バキューブランド VACUU・VIEW
  4. 標準物質ーChemical Times特集より
  5. カブトガニの血液が人類を救う
  6. THE PHD MOVIE
  7. アルカロイドの大量生産
  8. 大型リチウムイオン電池及び関連商品・構成材料の開発【終了】
  9. コーンフォース転位 Cornforth Rearrangement
  10. ウルリッヒ・ウィーズナー Ulrich Wiesner

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
« 6月   8月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

ケミカルバイオロジー・生体関連化学用途の分子構造において、とにかくよく見かけるポリエチレングリコール…

バリー・ハリウェル Barry Halliwell

バリー・ハリウェル (Barry Halliwell、1949年10月18日-)は、イギリスの生化学…

湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜

第342回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科・宮澤友樹 さんにお願いし…

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP