[スポンサーリンク]

ケムステニュース

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

[スポンサーリンク]

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとなる国産再開で安定供給につなげたい考えだ。 (引用:読売新聞7月15日)

放射性物質は医療分野で広く活用されていて、例えば放射線照射によるがんの縮小・消滅は古くから知られており、広く行われています。また放射線物質を体内に投与し、全身の放射線量を調べ、がんなどの早期発見に役立てる検査も最近では一般的になっています。ただし放射性物質は、試薬を混ぜ、反応によって作り出すことはできず、原子力といった高エネルギーの力を借りないと作り出すことはできません。日本では福島第一原発事故の影響で、原子炉が使えず医療用の放射性物質を製造できなくなり、海外からの輸入に頼っていました。今回は、その輸入に頼っている放射性物質の製造を日本国内で再開・検討するというニュースを紹介します。

まず国内製造の再開と新規製造に向けた試験が行われる予定の核種は、198Au, 192Ir, 99Mo, 225Acでそれぞれの特徴は下記の通りです。

198Auと 192Irは、その金属単体を安定同位体の金属や合金で被覆、密閉し、カプセル状に加工します。そしてそれを体内のがん組織近くに留置し、カプセルから放射されるガンマ線によってがん組織にダメージを与えます。198Auと 192Irの製造方法は中性子線の照射であり、安定同位体である197Auと191Irに原子炉から放出される中性子線を照射すると、中性子の捕捉吸収により198Auと 192Irが生成されます。

RALS(Remote After Loading System)と呼ばれるがん治療で用いられる線源(出典:産総研プレスリリース)

99Moはそれ自身を体内に投与するのではなく、ベータ崩壊した99mTcを取り出して使用されます。99mTcを取り出す機器はジェネレータと呼ばれていて、アルミナカラムに99MoO42-が吸着してあり、99Moのベータ壊変により産生した99mTcO4を生理食塩水でアルミナカラムから溶出して得ることができます。これはアルミナカラムの吸着性の違いを利用してTcのみ溶出させる仕組みで、また一度Tcを溶出させても1日後には,99Mo と99mTc は放射平衡に達し99mTcの量は最大になるので定期的に99mTcを得ることができます。得られた99mTcは、SPECT(Single Photon Emission Computed Tomography)と呼ばれる画像診断で使われ、99mTcを体内に投与した後、放射線検出装置で体内から放出されるガンマ線の分布を調べ、骨や脳内に腫瘍などが無いか調べます。似たような診断方法PETがありますが、PETでは18Fなどのベータ崩壊する核種を使用する一方、SPECTではガンマ線を放出する核種が使用され、99mTcはガンマ線しか放出しないため、SPECTに適しています。

99mTcを取り出すジェネレータの仕組みと内部(出典:Radiopharmaceutical Production – Generators

99Moは、ウランの核分裂によって製造されますが、原発とは異なり高濃縮ウランが使われます。そのためテロの脅威があり、また各国の製造用の原子炉は老朽化しており供給の不安定要因が高い放射性物質です。

225Acは上記の三つとは異なり、アルファ崩壊する核種です。治療目的での放射性を照射する場合、体の外からガンマ線を照射するか、198Auと 192Irのようにカプセルを埋め込んでベータ線を照射する方法が主流ですが、アルファ線を活用する方法も研究されています。具体的には、放射性核種をガン細胞に発現している抗原や受容体に特異的に集積するような構造を持つ分子に組み込み、なるべくがん細胞に接近して集中してアルファ線を照射する方法です。アルファ線は、エネルギーはベータ線やガンマ線よりエネルギーが強いものの飛程が短いため、目標に正しく接近できれば、他の部位へのダメージも低減されます。

225Acの活用は、研究途中であり安定的な製造方法も確立されていません。233U→229Th→225Acと壊変して得られますが、233Uの現在の生産源は、かつて核兵器開発が活発に行われた時代に生成されたものであるため、全世界の供給量は限られています。そのため各国で製造法の研究が進められています。

なぜ今、放射性物質の国内製造の再開理由は、研究用原子炉 JRR-3の供用運転を7月12日に再開したからのようです。JRR-3は、日本原子力研究開発機構が茨城県東海村に保有する研究用の原子炉で、1962年に初臨界、1990年に出力アップ改造工事後、再度初臨界を迎えました。2010年の定期検査で停止しましたが、その後東日本大震災が起きてしまい、新規制基準への適合するための工事を行っていました。2021年の初めには、原子力規制委員会による使用前検査、使用前確認、定期事業者検査に合格し、2月26日に運転を再開しました。そして実験設備等の調整を終え、7月の供用運転に至ったようです。

198Auと 192Irに関しては、震災前まではJRR-3と廃炉作業がに入ったJRR-4で製造しており、すぐに製造の再開ができるようです。99Moは、1972年から1985年にかけて改修前のJRR-3で国内製造の技術開発を進めていましたが製造量が確保できず、またその当時はカナダからの供給が確保されていたことから検討を中止しました。JRR-3の運転開始に伴い、99Moの製造試験を開始しますが、製造能力が低いか原子炉を止めるタイミングでしか試料の取り出しができないなど、生産効率に中長期的な課題があるようです。そのため、設備の改良にも力を入れていくようです。

225Acは、高速増殖炉常陽での製造が検討されています。常陽も日本原子力研究開発機構が茨城県大洗町に保有する研究用の実験炉で、1977年の運転開始から2度の改造で出力をアップさせ2007年に実験装置が破損するまで運転をしていました。高速増殖炉と言えばもんじゅが有名ですが、もんじゅはこの常陽での実験データを元に建設されました。高速増殖炉は、高速中性子を239Puに当てて核分裂を起こし、その中性子で238Uの239Puへの変換と239Puの核分裂を促し、238Uの燃料化と発電を同時に行う設備です。

この高速増殖炉で放出される高速中性子が225Ac製造においてキーとなり、具体的には2通りの製造方法が検討されています。どちらも、高速中性子を照射することで中性子が2個放出される現象を利用して中性子が一つ少ない元素を作り出す経路が考えられています。

ThとRaに高速中性子を照射したときの変化

現在、常陽は核燃料施設等の新規制基準適合性に係る審査が続いています。今年の1月には再稼働の目標を時期を早くても2024と発表しており、この225Ac製造までの道のりは長いようです。

放射線は、治療・診断においては有用な手段であり、他の方法で代替することは難しく、今後も広く使われ、新たな技術の開発も進むと予想されます。一方原子力は、震災以来、世間では安全性が懸念される技術という見方があり、また加えて、昨今のエネルギーへの転換の風潮も高まっており、実験炉でさえ運転の風当たりは強いのではないでしょうか。そして風潮だけでなく事実として、いくつかの実験炉の廃炉が決定しています。JRR-3の運転再開により、国内の放射線物質の入手性が改善されることが予想されますが、トラブルも起こりうるため医療で必要な放射線物質が滞らないように何らかの対策が引き続き求められていると思います。加速器を使用した放射性物質の製造も研究されており、大型で数台しかない設備を使用するからには国内で複数の製造方法が確立されることが望まれます。JRR-3に関して、規模が小さくても原子炉であることには変わらず、医療目的だとしても安全性の欠如は許されませんので安全に実験が続けられることを願います。

有機や無機合成において反応前後で元素記号が変わることはあり得ないため、中性子による反応は調べていてとても新鮮でした。目的の核種を得るための原料の選定と反応、アルファ、ベータ崩壊による変化は、まるで周期表というすごろくの上で駒を進めるようで、最後に紹介した高速中性子による変化は、どんでん返しの一手のように見えました。核反応のそのものは、物理に近い気がしますが、医療で使用する前処理は放射化学の領域であり、安全かつ無駄なく放射線物質を取り扱う技術が必要です。放射線物質の安定製造と幅広い活用に期待します。

関連書籍

[amazonjs asin=”4524403264″ locale=”JP” title=”新 放射化学・放射性医薬品学(改訂第4版)”] [amazonjs asin=”462130495X” locale=”JP” title=”原子力工学 放射線化学 (東京大学工学教程)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. サクラの酵母で作った赤い日本酒を商品化に成功
  2. アンモニアで走る自動車 国内初、工学院大が開発
  3. グリーンイノベーション基金事業でCO2などの燃料化と利用を推進―…
  4. 「携帯」の電池で電車走る・福井大などが実験に成功
  5. 2011年日本化学会各賞発表-学会賞-
  6. 歯のバイオフィルム除去と病原体検出を狙ったマイクロロボットの開発…
  7. 三菱ケミカルのサステナビリティに関する取り組み
  8. 「元素戦略プロジェクト」に関する研究開発課題の募集について

注目情報

ピックアップ記事

  1. 海外留学ってどうなんだろう? ~きっかけ編~
  2. イソプロポキシボロン酸ピナコール:Isopropoxyboronic Acid Pinacol Ester
  3. パターノ・ビューチ反応 Paterno-Buchi Reaction
  4. 万有製薬、つくば研究所を閉鎖
  5. ティム・スワガー Timothy M. Swager
  6. 秋の褒章2011-化学
  7. 化学コミュニケーション賞2022が発表
  8. Reaxys体験レポート:ログイン~物質検索編
  9. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Part III
  10. Comprehensive Organic Transformations: A Guide to Functional Group Preparations

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP