[スポンサーリンク]

一般的な話題

天秤で量れるのは何mgまで?

[スポンサーリンク]

どんな測定にも測定限界がありますが、一番身近な測定装置である電子天秤の測定限界はご存知でしょうか?
恐らく有機合成をしている多くの人が、微量の触媒や生成物、あるいは測定試料を秤量していて正確性に不安を覚えたことがあると思います。これまでケムステにも、どうすれば秤量誤差を少なくできるかについていくつか記事がありました(これとかこれ)。では、最小でどれくらい量れるかというと……どうでしょうか?
本記事では、有機合成実験(試料は1度しか秤量しない)をする上で「1番少量の試薬が何mg以上になるよう反応のスケールを設計すれば安心か?」について考えたいと思います。

「d = 0.01 mg」は「最小0.01 mgが秤量できる」ではない

これ、誤解している人が多いのではないでしょうか。筆者の周りには、島津やAND、sartorius、メトラーの天秤がありますが、いずれも天秤本体のどこかに「d = 0.01 mg」などと書かれています。意味ありげですが、これは最小で0.01 mgのサンプルが正確に秤量できるという意味ではありません。

「d = 0.01 mg」は、ただの「最小表示」です。
貴重な触媒や試薬だからと言って、0.01 mgだけ秤量……と計画するのは避けたいところ。仮に天秤が理想的な環境に置かれていたとしても、その値には大きな誤差が含まれます。

じゃあ結局最小で何mg量れるの? カタログやHPにはたくさんの指標があって、どれが重要か全くわからない! ……ですよね。恥ずかしながら筆者も、天秤の購入を検討するときに比較のためにHPをみて愕然としました。

小スケールの際は繰り返し性(標準偏差)をチェックすべし

注目するとよい代表的な誤差の指標として、繰り返し性と直線性が挙げられます。繰り返し性とは、分銅を10回量って計算された標準偏差です。一方直線性は、例えば10 gの分銅と10 mgの分銅では誤差の程度が同じではない、ということに対応します。
一般に繰り返し性より直線性の値の方が大きいのですが、重いサンプルを測定するほど誤差は大きくなる傾向にあり、直線性はこの「大きい場合の誤差」と考えて良さそうです。逆に小スケールでは直線性の影響は小さく、特にキャリブレーション(直線性の補正)された天秤では、繰り返し性に比べ無視しても構わないほど小さくなるようです。
蛇足ですが、誤差について「ある特定の値での測定値のばらつき」と「値の範囲によるばらつきの程度の差」で整理するのは、天秤以外にも色んな測定機器を利用する際に参考になる考え方だなと思います。

さて、では具体例を見てみましょう。
例えばメトラーの天秤XSR205DUVは、こちらのHPにあるように、

繰り返し性 0.02 mg
直線性 ±0.2 mg

とあります。これは、1度だけ試料を量った場合、(環境による誤差要因を最小にしたとしても)最悪で±0.2 mgのズレが生じうるという意味のようです。しかし前述の通り、直線性のズレは少量では小さいため、小スケールの場合は主に繰り返し性(0.02 mg)を考慮すればよいことになります。

まとめ

最小表示が0.01 mgでも、その量が正確に量れるわけではありません。小スケールの場合は、1番少量の試薬が繰り返し性より十分大きい量になるようスケールを設計すると安心です。
例に出した装置では繰り返し性(標準偏差)が0.02 mgなので、例えば最小表示の10倍である0.1 mgを量ったとしても、20%の誤差があることになります。ちょっと大きい気がしますね。もしこの天秤を使って触媒反応の条件検討などを行うなら、もう少し秤量する量が大きくなるよう反応自体のスケールを見直す必要があるかもしれません。

大事な点は、「最小でこの量までは正確に量れます」という数値があるのではなく、常に誤差がついてくるということですね。また、繰り返し性や直線性は装置に由来する誤差なので、環境由来の誤差を少なくする工夫も重要です。そちらについてはケムステの過去記事をご覧ください。

繰り返し性・直線性は装置本体には書いていないことも多いです。新年の初めにまず、手元の天秤について取説やHPでチェックしてみてはいかがでしょうか?

2022/3/13 追記:
一部誤解を招く表現があるとの指摘をいただき、加筆修正致しました。ご指摘くださった方、ありがとうございました。

関連記事

関連リンク

Avatar photo

arrow

投稿者の記事一覧

大学で有機金属触媒について研究している学生→発光材料や分子性電子素子を研究している大学教員になりました。 好きなものはバスケとお酒、よくしゃべりよく聞きよく笑うこと。 日々の研究生活で見、聞き、感じ、考えたことを発信していきます。

関連記事

  1. JSRとはどんな会社?-1
  2. SigmaAldrichフッ素化合物30%OFFキャンペーン
  3. 女性化学賞と私の歩み【世界化学年 女性化学賞受賞 特別イベント】…
  4. 売切れ必至!?ガロン瓶をまもるうわさの「ガロテクト」試してみた
  5. メソポーラスシリカ(2)
  6. 立体選択的なスピロ環の合成
  7. 「anti-マルコフニコフ型水和反応を室温で進行させる触媒」エー…
  8. 逐次的ラジカル重合によるモノマー配列制御法

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスの基礎
  2. エーザイ、抗てんかん剤「イノベロン」、ドイツなどで発売を開始
  3. 有機合成化学協会誌2021年3月号:水素抽出型化学変換・環骨格一挙構築・新規アルコキシメチル基・π拡張非交互炭化水素・フローマイクロリアクター
  4. 有機合成化学協会誌2024年8月号:連続フロー合成・AI創薬・環状有機ケイ素化合物・カルボン酸α位修飾・触媒的還元的アミノ化
  5. 第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授
  6. ハワイの海洋天然物(+)-Waixenicin Aの不斉全合成
  7. ドラッグデザインにおいてのメトキシ基
  8. 【書籍】パラグラフ・ライティングを基礎から訓練!『論理が伝わる 世界標準の「書く技術」』
  9. シュタウディンガー ケテン環化付加 Staudinger Ketene Cycloaddition
  10. START your chemi-storyー日産化学工業会社説明会2018

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP