[スポンサーリンク]

一般的な話題

天秤で量れるのは何mgまで?

[スポンサーリンク]

どんな測定にも測定限界がありますが、一番身近な測定装置である電子天秤の測定限界はご存知でしょうか?
恐らく有機合成をしている多くの人が、微量の触媒や生成物、あるいは測定試料を秤量していて正確性に不安を覚えたことがあると思います。これまでケムステにも、どうすれば秤量誤差を少なくできるかについていくつか記事がありました(これとかこれ)。では、最小でどれくらい量れるかというと……どうでしょうか?
本記事では、有機合成実験(試料は1度しか秤量しない)をする上で「1番少量の試薬が何mg以上になるよう反応のスケールを設計すれば安心か?」について考えたいと思います。

「d = 0.01 mg」は「最小0.01 mgが秤量できる」ではない

これ、誤解している人が多いのではないでしょうか。筆者の周りには、島津やAND、sartorius、メトラーの天秤がありますが、いずれも天秤本体のどこかに「d = 0.01 mg」などと書かれています。意味ありげですが、これは最小で0.01 mgのサンプルが正確に秤量できるという意味ではありません。

「d = 0.01 mg」は、ただの「最小表示」です。
貴重な触媒や試薬だからと言って、0.01 mgだけ秤量……と計画するのは避けたいところ。仮に天秤が理想的な環境に置かれていたとしても、その値には大きな誤差が含まれます。

じゃあ結局最小で何mg量れるの? カタログやHPにはたくさんの指標があって、どれが重要か全くわからない! ……ですよね。恥ずかしながら筆者も、天秤の購入を検討するときに比較のためにHPをみて愕然としました。

小スケールの際は繰り返し性(標準偏差)をチェックすべし

注目するとよい代表的な誤差の指標として、繰り返し性と直線性が挙げられます。繰り返し性とは、分銅を10回量って計算された標準偏差です。一方直線性は、例えば10 gの分銅と10 mgの分銅では誤差の程度が同じではない、ということに対応します。
一般に繰り返し性より直線性の値の方が大きいのですが、重いサンプルを測定するほど誤差は大きくなる傾向にあり、直線性はこの「大きい場合の誤差」と考えて良さそうです。逆に小スケールでは直線性の影響は小さく、特にキャリブレーション(直線性の補正)された天秤では、繰り返し性に比べ無視しても構わないほど小さくなるようです。
蛇足ですが、誤差について「ある特定の値での測定値のばらつき」と「値の範囲によるばらつきの程度の差」で整理するのは、天秤以外にも色んな測定機器を利用する際に参考になる考え方だなと思います。

さて、では具体例を見てみましょう。
例えばメトラーの天秤XSR205DUVは、こちらのHPにあるように、

繰り返し性 0.02 mg
直線性 ±0.2 mg

とあります。これは、1度だけ試料を量った場合、(環境による誤差要因を最小にしたとしても)最悪で±0.2 mgのズレが生じうるという意味のようです。しかし前述の通り、直線性のズレは少量では小さいため、小スケールの場合は主に繰り返し性(0.02 mg)を考慮すればよいことになります。

まとめ

最小表示が0.01 mgでも、その量が正確に量れるわけではありません。小スケールの場合は、1番少量の試薬が繰り返し性より十分大きい量になるようスケールを設計すると安心です。
例に出した装置では繰り返し性(標準偏差)が0.02 mgなので、例えば最小表示の10倍である0.1 mgを量ったとしても、20%の誤差があることになります。ちょっと大きい気がしますね。もしこの天秤を使って触媒反応の条件検討などを行うなら、もう少し秤量する量が大きくなるよう反応自体のスケールを見直す必要があるかもしれません。

大事な点は、「最小でこの量までは正確に量れます」という数値があるのではなく、常に誤差がついてくるということですね。また、繰り返し性や直線性は装置に由来する誤差なので、環境由来の誤差を少なくする工夫も重要です。そちらについてはケムステの過去記事をご覧ください。

繰り返し性・直線性は装置本体には書いていないことも多いです。新年の初めにまず、手元の天秤について取説やHPでチェックしてみてはいかがでしょうか?

2022/3/13 追記:
一部誤解を招く表現があるとの指摘をいただき、加筆修正致しました。ご指摘くださった方、ありがとうございました。

関連記事

関連リンク

arrow

投稿者の記事一覧

大学で有機金属触媒について研究している学生→発光材料や分子性電子素子を研究している大学教員になりました。 好きなものはバスケとお酒、よくしゃべりよく聞きよく笑うこと。 日々の研究生活で見、聞き、感じ、考えたことを発信していきます。

関連記事

  1. 文献検索サイトをもっと便利に:X-MOLをレビュー
  2. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線…
  3. システインから無機硫黄を取り出す酵素反応の瞬間を捉える
  4. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポ…
  5. Whitesides’ Group: Writing…
  6. 有機合成化学者が不要になる日
  7. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」…
  8. キッチン・ケミストリー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ダイセルが開発した新しいカラム: DCpak PTZ
  2. アルケンの実用的ペルフルオロアルキル化反応の開発
  3. 第10回日本化学連合シンポジウム 化学コミュニケーション賞2016 表彰式
  4. ロバート・クラブトリー Robert H. Crabtree
  5. 奇跡の素材「グラフェン」を使った世界初のシューズが発売
  6. ミズロウ・エヴァンス転位 Mislow-Evans Rearrangement
  7. 君はホンモノの潤滑油を知っているか?:自己PRで潤滑油であることをアピールする前に中身や仕組みを知っておこう
  8. 自己紹介で差がつく3つのポイント
  9. PEG化合物を簡単に精製したい?それなら塩化マグネシウム!
  10. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

第27回ケムステVシンポ『有機光反応の化学』を開催します!

7月に入り、いよいよ日差しが強まって夏本格化という時期になりました。光のエネルギーを肌で感じられます…

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP