[スポンサーリンク]

スポットライトリサーチ

光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発

[スポンサーリンク]

第325回のスポットライトリサーチは、中央大学大学院 応用化学専攻 分光化学システム研究室(片山研究室)出身の海老原 誠さんにお願いしました。

片山研究室では、時空間分解分光やデータサイエンスを駆使して新しい分光分析手法を精力的に開発されています。

半導体光触媒を利用した水分解反応は近年劇的な発展が報告されており、人工光合成の実現に向けた注目が集まっています。天然の光合成システムを模倣した多段階光吸収を利用した光触媒(Zスキーム型光触媒)は特に注目されている系の一つですが、複数のコンポーネントが不均一に分布した複合系であり、微視的な反応メカニズムの解明は困難を極めていました。今回紹介する研究では、片山研が得意とする時空間分解分光とデータサイエンスの手法を組み合わせることで、活性サイトの分布を可視化する画期的な成果を上げられています。Nature Communications誌に原著論文として公開され、プレスリリースも公開されています。

Charge Carrier Mapping for Z-scheme Photocatalytic Water-Splitting Sheet via Categorization of Microscopic Time-resolved Image Sequences”
Makoto Ebihara, Takeshi Ikeda, Sayuri Okunaka, Hiromasa Tokudome, Kazunari Domen & Kenji Katayamae, Nature Communications 2021, 12, 3716. DOI:10.1038/s41467-021-24061-4

研究室を主催する片山建二教授からは、海老原さんと本成果について以下のようなコメントをいただいています。

海老原誠君は、学部4年生から、私の研究グループに参加しました。学業成績もよかったのですが、明朗・快活で何でもできる、という感じの学生でした。当時、JSTの研究で本研究成果にもつながった新しい計測装置+数理解析、今でいう計測インフォマティクスの研究にとりかかったころで、彼はそのど真ん中の研究テーマに協力して取り組んでもらいました。そのため、装置もなかなかできず、解析手法も決まらず、暗中模索のまま、2年が経過し、研究成果が出始めたのも、彼が修士2年になったころでした。装置・数理が定まってからは、次々と成果があがり、修士を終えるころには、この論文を含め、4報の報告、うち1つは表紙にも採用されました。この3年間はやることなすことすべて新しいことだったはずですが、前提なく素直に受け入れる彼の性格がいい方向に向かったと思います。また、この研究成果の肝になったデータからの気づきは、私も気づかなかったところで、彼がいなければたどりつけなかった成果です。PhDに進学してほしかったですが、「前提なく」、新しいものを受け入れながら、新しい道を見つけることにしたようです。彼の将来の活躍を期待しています。

それではインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

当研究室で開発してきた顕微鏡による測定と画像データの情報科学的処理手法を組み合わせて、光触媒水分解材料中の水分解反応における電荷輸送過程を可視化した研究です。

図1. Zスキーム型光触媒水分解材料の概略図

今回共同研究をさせていただいたTOTO株式会社と東京大学による人工光合成プロジェクトにおいて、水素発生光触媒と酸素発生光触媒を複合したZスキーム型光触媒と呼ばれる材料が開発され(図1)、安価で大量生産できるシート状の材料が高い水分解効率を示すことが知られています。しかし、従来水分解反応の性能は水分解効率や光電流効率で評価され、膜全体の平均的な性能評価しかできませんでした。特に今回の研究対象である複合的な材料の場合、単一材料の組成や膜の不均一性がµmのスケールで生じており、反応の活性・不活性点が存在していることは明らかですが、局所的な反応効率の違いを示す分析は困難でした。そこで本研究では、新たな光触媒水分解材料の性能評価方法として、当研究室で開発したパターン光照射時間分解位相差顕微鏡(PI-PM法)によって得られた時間分解画像中の各点での電荷信号を集めてビックデータとして、クラスタリングと呼ばれる電荷信号の類似性から電荷の種類を区別する手法(図2)を組み合わせることで光触媒水分解シート上の水分解反応の活性・不活性サイトを識別することに成功しました。(図3)この分析手法は、近年急速に進む大規模な光触媒パネルの実用化に向けた材料や設計プロセスの最適化に貢献することが期待されています。

図2. クラスタリング解析の手順

図3. 各電荷成分の分類マッピングと平均応答

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

結果の再現性が確実に取れていて、合理的な説明できるかということを強く意識して、研究を進めていきました。特に結果の再現性という点では、時間分解測定はサンプル界面に添加する測定溶媒の量や光学配置のわずかなズレなど、数多くの細かい実験条件を少し変えるだけでも信号強度が大きく変化してしまうデリケートな測定のため、信号が安定して得られる実験条件を何週間もかけて模索しました。朝早くから実験を始め、大学が閉まるギリギリまで測定室にこもり続けることもありましたが、納得のいく結果が初めて得られたときは、誰もいない研究室内で一人で喜んだことを覚えています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回測定したZスキーム型複合材料の電荷輸送過程のメカニズムについて報告されている例がほとんどなかったため、この研究のメインの解析まで辿り着くための数々の測定が非常に大変でした。その中でもロジウムをドープしたチタン酸ストロンチウム(Rh:SrTiO3)のみが特異的な電荷応答の信号を示し、その考察に時間を要しました。先行研究から、Rh:SrTiO3はRhのドーピングによって特殊なバンド構造をしているため、光生成したプラスの電荷(ホール)が蓄積し、酸化されやすい材料であることが原因ではないかと思い、酸化反応を妨げるような溶媒を添加して測定を行ってみると、信号が大きく変化し、この電荷成分を特定できました。この研究では、今まで自分が培ってきた経験や知識に加え、あらゆる先行研究に目を通し、様々な視点から可能性を探ることで新しい発見にたどり着きました。この過程そのものが自分が学んできた研究の集大成であり、その論文が権威のあるNature Communications誌にアクセプトされたことは自分が取り組んできたことが報われた瞬間であり、非常に嬉しかったです。

Q4. 将来は化学とどう関わっていきたいですか?

研究の進め方や思考力、自分の考えの伝え方など研究プロセスでは非常に多くのことを学びました。化学のみならず、どの分野においても柔軟な発想が提案できる仕事をしていきたいです

Q5. 最後に、読者の皆さんにメッセージをお願いします。

いつも先生に言われていたことですが、「得られた結果に対して、偏見を持たずに純粋な目で解釈する」ということはこの研究において非常に重要でした。測定結果のわずかな違いを見逃さずに、自分の考えが主張できたことが、この研究の成功の鍵だったと思います。研究生活は上手くいかないことがほとんどだと思いますが、粘り強く、自分の仕事に誇りを持てるように日々コツコツと積み重ねていけば道は開けるはずです。

関連リンク

  1. 中央大学大学院 応用化学専攻 分光化学システム研究室(片山研究室)HP
  2. プレスリリース:光触媒水分解における電荷輸送過程の可視化に成功 –電荷の動きの違いで反応領域を抽出

研究者の略歴

名前:海老原 誠(えびはら まこと)
所属:中央大学大学院 応用化学専攻 分光化学システム研究室(片山研)(研究当時)
略歴: 2021年3月 中央大学大学院 応用化学専攻 修了

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. Q&A型ウェビナー カーボンニュートラル実現のためのマ…
  2. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  3. ジンチョウゲ科アオガンピ属植物からの抗HIV活性ジテルペノイドの…
  4. 安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結…
  5. 【速報】2015年ノーベル化学賞は「DNA修復機構の解明」に!
  6. 有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭…
  7. 3色に変化する熱活性化遅延蛍光材料の開発
  8. 味の素グループの化学メーカー「味の素ファインテクノ社」を紹介しま…

注目情報

ピックアップ記事

  1. DOIって何?
  2. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  3. Wolfram|Alphaでお手軽物性チェック!「Reagent Table Widget」
  4. 理論化学と実験科学の協奏で解き明かしたブラシラン型骨格生合成の謎
  5. 「オプトジェネティクス」はいかにして開発されたか
  6. ヒト胚研究、ついに未知領域へ
  7. 付設展示会へ行こう!ーWiley編
  8. ジイミド還元 Diimide Reduction
  9. 社会に出てから大切さに気付いた教授の言葉
  10. 研究活動の御用達!PDF加工のためのクラウドサービス

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP