[スポンサーリンク]

スポットライトリサーチ

光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発

[スポンサーリンク]

第325回のスポットライトリサーチは、中央大学大学院 応用化学専攻 分光化学システム研究室(片山研究室)出身の海老原 誠さんにお願いしました。

片山研究室では、時空間分解分光やデータサイエンスを駆使して新しい分光分析手法を精力的に開発されています。

半導体光触媒を利用した水分解反応は近年劇的な発展が報告されており、人工光合成の実現に向けた注目が集まっています。天然の光合成システムを模倣した多段階光吸収を利用した光触媒(Zスキーム型光触媒)は特に注目されている系の一つですが、複数のコンポーネントが不均一に分布した複合系であり、微視的な反応メカニズムの解明は困難を極めていました。今回紹介する研究では、片山研が得意とする時空間分解分光とデータサイエンスの手法を組み合わせることで、活性サイトの分布を可視化する画期的な成果を上げられています。Nature Communications誌に原著論文として公開され、プレスリリースも公開されています。

Charge Carrier Mapping for Z-scheme Photocatalytic Water-Splitting Sheet via Categorization of Microscopic Time-resolved Image Sequences”
Makoto Ebihara, Takeshi Ikeda, Sayuri Okunaka, Hiromasa Tokudome, Kazunari Domen & Kenji Katayamae, Nature Communications 2021, 12, 3716. DOI:10.1038/s41467-021-24061-4

研究室を主催する片山建二教授からは、海老原さんと本成果について以下のようなコメントをいただいています。

海老原誠君は、学部4年生から、私の研究グループに参加しました。学業成績もよかったのですが、明朗・快活で何でもできる、という感じの学生でした。当時、JSTの研究で本研究成果にもつながった新しい計測装置+数理解析、今でいう計測インフォマティクスの研究にとりかかったころで、彼はそのど真ん中の研究テーマに協力して取り組んでもらいました。そのため、装置もなかなかできず、解析手法も決まらず、暗中模索のまま、2年が経過し、研究成果が出始めたのも、彼が修士2年になったころでした。装置・数理が定まってからは、次々と成果があがり、修士を終えるころには、この論文を含め、4報の報告、うち1つは表紙にも採用されました。この3年間はやることなすことすべて新しいことだったはずですが、前提なく素直に受け入れる彼の性格がいい方向に向かったと思います。また、この研究成果の肝になったデータからの気づきは、私も気づかなかったところで、彼がいなければたどりつけなかった成果です。PhDに進学してほしかったですが、「前提なく」、新しいものを受け入れながら、新しい道を見つけることにしたようです。彼の将来の活躍を期待しています。

それではインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

当研究室で開発してきた顕微鏡による測定と画像データの情報科学的処理手法を組み合わせて、光触媒水分解材料中の水分解反応における電荷輸送過程を可視化した研究です。

図1. Zスキーム型光触媒水分解材料の概略図

今回共同研究をさせていただいたTOTO株式会社と東京大学による人工光合成プロジェクトにおいて、水素発生光触媒と酸素発生光触媒を複合したZスキーム型光触媒と呼ばれる材料が開発され(図1)、安価で大量生産できるシート状の材料が高い水分解効率を示すことが知られています。しかし、従来水分解反応の性能は水分解効率や光電流効率で評価され、膜全体の平均的な性能評価しかできませんでした。特に今回の研究対象である複合的な材料の場合、単一材料の組成や膜の不均一性がµmのスケールで生じており、反応の活性・不活性点が存在していることは明らかですが、局所的な反応効率の違いを示す分析は困難でした。そこで本研究では、新たな光触媒水分解材料の性能評価方法として、当研究室で開発したパターン光照射時間分解位相差顕微鏡(PI-PM法)によって得られた時間分解画像中の各点での電荷信号を集めてビックデータとして、クラスタリングと呼ばれる電荷信号の類似性から電荷の種類を区別する手法(図2)を組み合わせることで光触媒水分解シート上の水分解反応の活性・不活性サイトを識別することに成功しました。(図3)この分析手法は、近年急速に進む大規模な光触媒パネルの実用化に向けた材料や設計プロセスの最適化に貢献することが期待されています。

図2. クラスタリング解析の手順

図3. 各電荷成分の分類マッピングと平均応答

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

結果の再現性が確実に取れていて、合理的な説明できるかということを強く意識して、研究を進めていきました。特に結果の再現性という点では、時間分解測定はサンプル界面に添加する測定溶媒の量や光学配置のわずかなズレなど、数多くの細かい実験条件を少し変えるだけでも信号強度が大きく変化してしまうデリケートな測定のため、信号が安定して得られる実験条件を何週間もかけて模索しました。朝早くから実験を始め、大学が閉まるギリギリまで測定室にこもり続けることもありましたが、納得のいく結果が初めて得られたときは、誰もいない研究室内で一人で喜んだことを覚えています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回測定したZスキーム型複合材料の電荷輸送過程のメカニズムについて報告されている例がほとんどなかったため、この研究のメインの解析まで辿り着くための数々の測定が非常に大変でした。その中でもロジウムをドープしたチタン酸ストロンチウム(Rh:SrTiO3)のみが特異的な電荷応答の信号を示し、その考察に時間を要しました。先行研究から、Rh:SrTiO3はRhのドーピングによって特殊なバンド構造をしているため、光生成したプラスの電荷(ホール)が蓄積し、酸化されやすい材料であることが原因ではないかと思い、酸化反応を妨げるような溶媒を添加して測定を行ってみると、信号が大きく変化し、この電荷成分を特定できました。この研究では、今まで自分が培ってきた経験や知識に加え、あらゆる先行研究に目を通し、様々な視点から可能性を探ることで新しい発見にたどり着きました。この過程そのものが自分が学んできた研究の集大成であり、その論文が権威のあるNature Communications誌にアクセプトされたことは自分が取り組んできたことが報われた瞬間であり、非常に嬉しかったです。

Q4. 将来は化学とどう関わっていきたいですか?

研究の進め方や思考力、自分の考えの伝え方など研究プロセスでは非常に多くのことを学びました。化学のみならず、どの分野においても柔軟な発想が提案できる仕事をしていきたいです

Q5. 最後に、読者の皆さんにメッセージをお願いします。

いつも先生に言われていたことですが、「得られた結果に対して、偏見を持たずに純粋な目で解釈する」ということはこの研究において非常に重要でした。測定結果のわずかな違いを見逃さずに、自分の考えが主張できたことが、この研究の成功の鍵だったと思います。研究生活は上手くいかないことがほとんどだと思いますが、粘り強く、自分の仕事に誇りを持てるように日々コツコツと積み重ねていけば道は開けるはずです。

関連リンク

  1. 中央大学大学院 応用化学専攻 分光化学システム研究室(片山研究室)HP
  2. プレスリリース:光触媒水分解における電荷輸送過程の可視化に成功 –電荷の動きの違いで反応領域を抽出

研究者の略歴

名前:海老原 誠(えびはら まこと)
所属:中央大学大学院 応用化学専攻 分光化学システム研究室(片山研)(研究当時)
略歴: 2021年3月 中央大学大学院 応用化学専攻 修了

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  2. 【追悼企画】不斉酸化反応のフロンティアー香月 勗
  3. 化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編
  4. 触媒がいざなう加速世界へのバックドア
  5. MEDCHEM NEWS 33-1 号 「創薬への貢献」
  6. ビタミンB12を触媒に用いた脱ハロゲン化反応
  7. マテリアルズ・インフォマティクスのためのデータサイエンティスト入…
  8. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…

注目情報

ピックアップ記事

  1. “へぇー、こんなシンプルにできるんだっ!?”四級アンモニウム塩を触媒とするアルキンのヒドロシリル化反応
  2. トリフルオロメタンスルホン酸2-(トリメチルシリル)フェニル : 2-(Trimethylsilyl)phenyl Trifluoromethanesulfonate
  3. 【技術者・事業担当者向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 〜ケミカルリサイクル、焼成、乾燥、金属製錬など〜
  4. 世界の化学企業ーグローバル企業21者の強みを探る
  5. ライアン・シェンビ Ryan A. Shenvi
  6. チャップマン転位 Chapman Rearrangement
  7. Passerini反応を利用できるアルデヒドアルデヒド・イソニトリル・カルボン酸・アミン(
  8. 酢酸エチルの高騰が止まらず。供給逼迫により購入制限も?
  9. 密閉容器や培養液に使える酸素計を使ってみた!
  10. ジュリアス・レベック Julius Rebek, Jr.

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

【書籍】Pythonで動かして始める量子化学計算

概要PythonとPsi4を用いて量子化学計算の基本を学べる,初学者向けの入門書。(引用:コ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP