[スポンサーリンク]

化学者のつぶやき

ピリジン-ホウ素ラジカルの合成的応用

[スポンサーリンク]

南京大学のShuhua Liらは、4-シアノピリジンとビス(ピナコラト)ジボラン(B2pin2)の組み合わせがホウ素-ホウ素結合を均等開裂させることを見いだし、エノンとピリジン4位間でのラジカルカップリングに応用した。光や金属を使うことなくボリルラジカル種を生成させ、合成的に活用できる新たなコンセプトである。

“Metal-Free Synthesis of C‑4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study”
Wang, G.; Cao, J.; Gao, L.; Chen, W.; Huang, W.; Cheng, W.*; Li, S.* J. Am. Chem. Soc. 2017, 139, 3904. DOI: 10.1021/jacs.7b00823

問題設定と解決した点

 ホウ素-ホウ素(B-B)結合の開裂は、通常は不均等開裂形式で進行する。例えば強塩基、遷移金属、NHCリガンドを用いてこれを行い、ボリルアニオンとして合成反応に用いる報告は多数知られている[1]。しかしながら強固なB-B結合を均等開裂させることは通常困難である。また、4-位置換ピリジンの医薬、機能性材料としての有用性から、これまでにない新規合成戦略の開拓も望まれていた。

 著者らは最近、4-シアノピリジンをルイス塩基として用いることでB-B結合を均等開裂させる方法を報告した[2]。生じたボリルラジカル種は、ヒドラジンやスルフィド、キノンを還元できることが示されていた。これがピリジン導入試薬として使えるとの発想から、表題の研究に取り組んでいる。

技術や手法のキモ

 中間体と目されるピリジン⁻ボリルラジカル種をDFT計算すると、C4位のスピン密度が高いことが見いだされた。これがボリルラジカル+ピリジン炭素ラジカルの”bifunctional reagent”として機能するのではないかとの着想が研究の発端となっている。またこのラジカル生成過程は可逆であり、ピリジン-ボリルラジカルはpersistent radicalであることも示されている。

画像は論文SIより引用


主張の有効性検証

想定される反応機構は以下の通りだが、これをいくつかの手法で裏付けている。

①計算化学による検証

シクロヘキセノン(2b)がピリジン-ボリルラジカル(1)のホウ素と反応してInt2を与える。B-O結合が強いため、Int2は原系から1.8kcal/molしか不安定化を受けていない。

そこからさらに1と反応する経路だが、1,2-付加と1,4-付加の二通りが考えられる。計算からは、1,4-付加体(Int3)のほうが1,2-付加体(Int4)よりも熱力学的に安定であることが示される。しかしながら生成系と遷移状態のエネルギー差は1,2-付加経路のほうが小さいため逆反応が進行しうるとの考察から、Int3Int4間での可逆平衡の存在が仮定された。

エネルギー図は論文より引用

②実験による検証

主には以下の事実から提唱反応機構がサポートされると主張している。

  1. 高温で反応を行うと1,2-/1,4-の選択性が1,4-付加側に寄る。
  2. Int3からpinB-CNが脱離した化学種がHRMSで観測される。
  3. 中間体のボロンエノラートが分子内CN基でトラップされる。
  4. ラジカルクロック実験によりシクロプロパン開環体が得られる。

③基質一般性

 エノンへの付加では1,4-付加が優先するが、少しの立体障害の影響でも選択性が大きく落ちてしまう。C3-置換ピリジンはある程度の官能基許容性があり、遷移金属を用いる場合に障害となるチオールやハロピリジンも許容される。C2-置換ピリジンでは反応は進行しない(立体障害の影響)。アルデヒド、ケトン、イミンへの反応も可能。多官能基性化合物のLate-Stage官能基化にも使える。


議論すべき点

  • 計算化学主導で物事を前に進めている反応開発のストーリーはユニークであり、著者のバックグラウンドが最大限に活きた研究になっている。発展性とオリジナリティの高い化学である。

次に読むべき論文は?

  • 同時期に登場した、類似コンセプトに基づくアリールハライドのボリル化[3]

参考文献

  1. Review: Dewhurst, R. D.; Neeve, E. C.; Braunschweig, H.; Marder, T. B. Chem. Commun. 2015, 51, 9594. DOI: 10.1039/C5CC02316E
  2. Wang, G.; Zhang, H.; Zhao, J.; Li, W.; Cao, J.; Zhu, C.; Li, S. Angew. Chem. Int. Ed. 2016, 55, 5985. DOI: 10.1002/anie.201511917
  3. Zhang, L.; Jiao, L. J. Am. Chem. Soc. 2017, 139, 607. DOI: 10.1021/jacs.6b11813
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 規則的に固定したモノマーをつないで高分子を合成する
  2. 分子標的の化学1「2012年ノーベル化学賞GPCRを導いた親和ク…
  3. ロタキサンを用いた機械的刺激に応答する効率的な分子放出
  4. 接着系材料におけるマテリアルズ・インフォマティクスの活用 -条件…
  5. (-)-Cyanthiwigin Fの全合成
  6. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究…
  7. MEDCHEM NEWS 31-1号「低分子創薬」
  8. AI解析プラットフォーム Multi-Sigmaとは?

注目情報

ピックアップ記事

  1. 貴金属に取って代わる半導体触媒
  2. クソニンジンのはなし ~草餅の邪魔者~
  3. START your chemi-storyー日産化学工業会社説明会
  4. 化学に耳をすませば
  5. マテリアルズ・インフォマティクス新春座談会 -二刀流で進める素材開発 実験と計算科学-
  6. カチオンキャッピングにより平面π系オリゴマーの電子物性調査を実現!
  7. アメリカ化学留学 ”立志編 ーアメリカに行く前に用意すること?ー”!
  8. (S,S)-DACH-phenyl Trost ligand
  9. カーボンナノチューブの分散とその応用【終了】
  10. 内部アルケン、ついに不斉ヒドロアミノ化に屈する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP