[スポンサーリンク]

化学者のつぶやき

ピリジン-ホウ素ラジカルの合成的応用

[スポンサーリンク]

南京大学のShuhua Liらは、4-シアノピリジンとビス(ピナコラト)ジボラン(B2pin2)の組み合わせがホウ素-ホウ素結合を均等開裂させることを見いだし、エノンとピリジン4位間でのラジカルカップリングに応用した。光や金属を使うことなくボリルラジカル種を生成させ、合成的に活用できる新たなコンセプトである。

“Metal-Free Synthesis of C‑4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study”
Wang, G.; Cao, J.; Gao, L.; Chen, W.; Huang, W.; Cheng, W.*; Li, S.* J. Am. Chem. Soc. 2017, 139, 3904. DOI: 10.1021/jacs.7b00823

問題設定と解決した点

 ホウ素-ホウ素(B-B)結合の開裂は、通常は不均等開裂形式で進行する。例えば強塩基、遷移金属、NHCリガンドを用いてこれを行い、ボリルアニオンとして合成反応に用いる報告は多数知られている[1]。しかしながら強固なB-B結合を均等開裂させることは通常困難である。また、4-位置換ピリジンの医薬、機能性材料としての有用性から、これまでにない新規合成戦略の開拓も望まれていた。

 著者らは最近、4-シアノピリジンをルイス塩基として用いることでB-B結合を均等開裂させる方法を報告した[2]。生じたボリルラジカル種は、ヒドラジンやスルフィド、キノンを還元できることが示されていた。これがピリジン導入試薬として使えるとの発想から、表題の研究に取り組んでいる。

技術や手法のキモ

 中間体と目されるピリジン⁻ボリルラジカル種をDFT計算すると、C4位のスピン密度が高いことが見いだされた。これがボリルラジカル+ピリジン炭素ラジカルの”bifunctional reagent”として機能するのではないかとの着想が研究の発端となっている。またこのラジカル生成過程は可逆であり、ピリジン-ボリルラジカルはpersistent radicalであることも示されている。

画像は論文SIより引用


主張の有効性検証

想定される反応機構は以下の通りだが、これをいくつかの手法で裏付けている。

①計算化学による検証

シクロヘキセノン(2b)がピリジン-ボリルラジカル(1)のホウ素と反応してInt2を与える。B-O結合が強いため、Int2は原系から1.8kcal/molしか不安定化を受けていない。

そこからさらに1と反応する経路だが、1,2-付加と1,4-付加の二通りが考えられる。計算からは、1,4-付加体(Int3)のほうが1,2-付加体(Int4)よりも熱力学的に安定であることが示される。しかしながら生成系と遷移状態のエネルギー差は1,2-付加経路のほうが小さいため逆反応が進行しうるとの考察から、Int3Int4間での可逆平衡の存在が仮定された。

エネルギー図は論文より引用

②実験による検証

主には以下の事実から提唱反応機構がサポートされると主張している。

  1. 高温で反応を行うと1,2-/1,4-の選択性が1,4-付加側に寄る。
  2. Int3からpinB-CNが脱離した化学種がHRMSで観測される。
  3. 中間体のボロンエノラートが分子内CN基でトラップされる。
  4. ラジカルクロック実験によりシクロプロパン開環体が得られる。

③基質一般性

 エノンへの付加では1,4-付加が優先するが、少しの立体障害の影響でも選択性が大きく落ちてしまう。C3-置換ピリジンはある程度の官能基許容性があり、遷移金属を用いる場合に障害となるチオールやハロピリジンも許容される。C2-置換ピリジンでは反応は進行しない(立体障害の影響)。アルデヒド、ケトン、イミンへの反応も可能。多官能基性化合物のLate-Stage官能基化にも使える。


議論すべき点

  • 計算化学主導で物事を前に進めている反応開発のストーリーはユニークであり、著者のバックグラウンドが最大限に活きた研究になっている。発展性とオリジナリティの高い化学である。

次に読むべき論文は?

  • 同時期に登場した、類似コンセプトに基づくアリールハライドのボリル化[3]

参考文献

  1. Review: Dewhurst, R. D.; Neeve, E. C.; Braunschweig, H.; Marder, T. B. Chem. Commun. 2015, 51, 9594. DOI: 10.1039/C5CC02316E
  2. Wang, G.; Zhang, H.; Zhao, J.; Li, W.; Cao, J.; Zhu, C.; Li, S. Angew. Chem. Int. Ed. 2016, 55, 5985. DOI: 10.1002/anie.201511917
  3. Zhang, L.; Jiao, L. J. Am. Chem. Soc. 2017, 139, 607. DOI: 10.1021/jacs.6b11813
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. タングトリンの触媒的不斉全合成
  2. 1,3-ジエン類のcine置換型ヘテロアリールホウ素化反応
  3. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線…
  4. 春季ACSMeetingに行ってきました
  5. 付設展示会に行こう!ー和光純薬編ー
  6. 博士課程学生の奨学金情報
  7. アメリカで Ph.D. を取る –結果発表ーッの巻–
  8. 電子デバイス製造技術 ーChemical Times特集より

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ポリアクリル酸ナトリウム Sodium polyacrylate
  2. sp3炭素のクロスカップリング反応の機構解明研究
  3. ブレデレック オキサゾール合成 Bredereck Oxazole Synthesis
  4. 野依不斉水素移動反応 Noyori Asymmetric Transfer Hydrogenation
  5. ジメチル(2-ピリジル)シリル化合物
  6. 春季ACSMeetingに行ってきました
  7. ジャンフェン・カイ Jianfeng Cai
  8. ケムステスタッフ徹底紹介!
  9. クロム光レドックス触媒を有機合成へ応用する
  10. C60MC12

関連商品

注目情報

注目情報

最新記事

引っ張ると白色蛍光を示すゴム材料

第204回のスポットライトリサーチは、北海道大学電子科学研究所 助教・相良 剛光 先生にお願いしまし…

強塩基条件下でビニルカチオン形成により5員環をつくる

LiHMDSと弱配位性アニオン塩触媒を用いた分子内C–H挿入反応が開発された。系内で調製したリチウム…

韓国へ輸出される半導体材料とその優遇除外措置について

経済産業省は1日、日韓の信頼関係が著しく損なわれたと判断し、韓国向けの輸出管理を強化すると発表した。…

Mestre NovaでNMRを解析してみよう

日本ではJEOLのマシンが普及していることもあり、DeltaでNMRの解析をしている人が多いとは思い…

奈良坂・プラサード還元 Narasaka-Prasad Reduction

概要βヒドロキシケトンを立体選択的に還元し、syn-1,3-ジオールを与える方法。anti-1,…

CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進

CAS launched a computer-aided retrosynthetic analy…

Chem-Station Twitter

PAGE TOP