[スポンサーリンク]

世界の化学者データベース

ロバート・フィップス Robert J. Phipps

[スポンサーリンク]

ロバート・フィップス(Robert J. Phipps、1983年7月3日–)は英国の有機化学者である。ケンブリッジ大学准教授。

経歴

2006 インペリアル・カレッジ・ロンドン 修了 (Prof. Alan C. Spivey)
2010 ケンブリッジ大学 博士号取得 (Prof. Matthew J. Gaunt)
2011– カリフォルニア大学バークレー校 博士研究員 (Prof. F. Dean Toste)
2013– ケンブリッジ大学 博士研究員 (Prof. Matthew J. Gaunt)
2014– ケンブリッジ大学 英国王立学会大学研究フェローシップ (特任助教授に相当)
2021– ケンブリッジ大学 准教授

受賞歴

2010 Reaxys Ph.D. Prize
2011–2013 Marie Curie Postdoctoral Fellowship
2014 Royal Society University Research Fellowship
2017 European Research Council Starting Grant (ERC)
2019 RSC Harrison-Meldola Memorial Prize

研究概要

非共有結合性相互作用を活用した反応開発
Phippsは2014年の研究室立ち上げ以降、非共有結合性相互作用に焦点を当てた反応開発を展開している。静電相互作用や水素結合を巧みに活用した反応中間体を設計し、反応位置の制御やエナンチオ選択性の発現に成功している。
1) 非共有結合性相互作用を用いた遷移金属触媒反応
Phippsは基質–触媒間の静電相互作用による種々の位置選択的C–Hボリル化を達成した。例えば、スルホナート部位をもつイリジウム触媒L1を用いるとアンモニウムアルキル基をもつ芳香環のメタ位選択的C–Hボリル化が進行することを見いだした。本反応では、L1上のスルホナートアニオンと、基質上のアンモニウムカチオンとの静電相互作用により芳香環メタ位C–H結合がイリジウムに接近できることが位置選択性の鍵である(1a,1b)。同触媒を用いると、アルキルアミドをもつ芳香環もメタ位選択的にボリル化できる。この場合は、L1のスルホナート部位とアミドN–Hの水素結合形成により位置選択性が発現する(1c)
また、嵩高いイオン対部位をもつ芳香族として、テトラブチルアンモニウムフェニル(もしくはベンジル)スルファートやスルファマートのパラ位選択的C–Hボリル化も達成した。嵩高い対カチオンを用いることで芳香環メタ位近傍の立体反発を大きくしパラ位選択性を発現した(1d)。なお、スルファートおよびスルファマートは反応後容易に対応するアルコール、アミンへと変換できる。

シンコナアルカロイド由来のキラルな対カチオンをもつイオン対ビピリジル配位子L2を用いて、ジアリールメチルアミドもしくはジアリールホスフィンアミドのメタ位選択的かつエナンチオ選択的C–Hボリル化を達成した(2)。配位子L2は、スルホナート部位とアミドN–Hとの水素結合形成によるメタ位選択性発現と、キラルな対カチオンによるエナンチオ選択性制御の二つの役割を担う。

また、静電相互作用を用いる戦略をロジウム触媒によるC–Hアミノ化 (Du Bois C–Hアミノ化)にも応用した。Du Boisアミノ化反応(3a,3b)で用いられるRh2(esp)2触媒をイオン性触媒へと改変することで、4-アリールブタノール類の分子間不斉Du Boisアミノ化を達成した(3c)。対カチオンにシンコナアルカロイド由来のアンモニウム(L3)をもつスルホナートesp類縁体配位子(sulfonesp)の開発が鍵であり、不斉発現のみならず、Rh2(esp)2触媒と比較して高収率で対応するアミノ化体を与える。L3のキノリン窒素原子がロジウムにアキシャル配位すること、スルホナート部位が4-アリールブタノールのヒドロキシ基と水素結合することが、高収率とエナンチオ選択性の両方に重要であることが示唆されている。

基質–触媒間の静電相互作用による精密反応制御をパラジウム触媒によるハロアレーンのカップリング反応にも応用した。Buchwald配位子SPhosもしくはtBuSPhosにスルホナート部位を導入したsSPhosおよびs(tBuSPhos)を用いることで、3,4-ジクロロベンジルスルホンアミドのメタ位選択的な鈴木–宮浦カップリング、薗頭カップリング、Buchwald–Hartwigアミノ化を達成した(4a)。基質のスルホンアミド部位と配位子のスルホナート部位が塩基由来のカリウムカチオンを介して静電相互作用することで、メタ位C–Cl結合がパラジウムへと近接し位置選択的にカップリング反応が進行すると考えられている。
また、炭酸ルビジウム存在下、イオン性配位子sXPhosを用いることで、2,4-ジクロロベンジルスルホンアミドのオルト位選択的鈴木–宮浦カップリングにも成功した(4b)。これら反応を用いれば2,4,5-トリクロロベンジルスルホンアミドに対する逐次的なカップリング反応ができることも示した。

2) キラルブレンステッド酸触媒を用いたエナンチオ選択的ミニスキ反応の開発
Phippsは非共有結合性相互作用を用いた反応制御を、ラジカル反応のエナンチオ選択性制御にも展開している。可視光照射下、キラルブレンステッド酸/可視光レドックス協働触媒条件で、アジン類とレドックス活性エステルとのエナンチオ選択的ミニスキ反応の開発に成功した(5a)。DFT計算を用いた詳細な機構解明研究により、ラジカル付加は可逆であり、その後のアミドの脱プロトン化が不斉発現段階であると結論づけている(5b)

コメント&その他

  • 非常に温和な性格でお兄さんのような関係性で親身に相談にのってくれる(6)
  • 学生時代にスキューバダイビングをやっていたが、今は子供の世話が趣味と言えるくらい家族を大切にしている(6)
  • よく研究室にふらっと現れて”How is your chemistry going?”と尋ねてきて、そこからディスカッションが始まり研究の方針などを定める(6)
  • 徹底した条件検討にこだわり、大量の条件を振って満足のいく最適条件を決定するスタイル(6)
  • 好きな本はトムクランシーの「レッド・オクトーバーを追え」(7)
  • 好きな映画はジャッキー・チェンの代表作「ポリス・ストーリー」(7)

関連文献

  1. (a) Davis, H. J.; Mihai, M. T.; Phipps, R. J. Ion Pair-Directed Regiocontrol in Transition-Metal Catalysis: A Meta-Selective C–H Borylation of Aromatic Quaternary Ammonium Salts. J. Am. Chem. Soc. 2016, 138, 12759−12762. DOI: 10.1021/jacs.6b08164 (b) Mihai, M. T.; Davis, H. J.; Genov, G. R.; Phipps, R. J. Ion Pair-Directed C–H Activation on Flexible Ammonium Salts: Meta-Selective Borylation of Quaternized Phenethylamines and Phenylpropylamines. ACS Catal. 2018, 8, 3764– 3769. DOI: 10.1021/acscatal.8b00423 (c) Davis, H. J.; Genov, G. R.; Phipps, R. J. Meta-Selective C–H Borylation of Benzylamine-, Phenethylamine- and Phenylpropylamine-Derived Amides Enabled by a Single Anionic Ligand. Angew. Chem., Int. Ed. 2017, 56, 13351–13355. DOI: 10.1002/anie.201708967 (d) Mihai, M. T.; Williams, B. D.; Phipps, R. J. Para-Selective C–H Borylation of Common Arene Building Blocks Enabled by Ion Pairing with a Bulky Counter cation. J. Am. Chem. Soc. 2019, 141, 15477–15482. DOI: 10.1021/jacs.9b07267
  2. Genov, G. R.; Douthwaite, J. L.; Lahdenperä, A. S. K.; Gibson, D. C.; Phipps, R. J. Enantioselective remote C–H Activation Directed by a Chiral Cation.Science 2020, 367, 1246–1251. DOI: 1126/science.aba1120
  3. (a) Espino, C. G.; Du Bois, J. A Rh-Catalyzed C–H Insertion Reaction for the Oxidative Conversion of Carbamates to Oxazolidinones. Angew. Chem., Int. Ed. 2001, 40, 598–600. DOI: 10.1002/1521-3773(20010202)40:3<598::AID-ANIE598>3.0.CO;2-9 (b)Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. Synthesis of 1,3-Difunctionalized Amine Derivatives Through Selective C–H Bond Oxidation. J. Am. Chem. Soc. 2001, 123, 6935–6936. DOI: 10.1021/ja011033x (c) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. Expanding the Scope of C–H Amination through Catalyst Design. J. Am. Chem. Soc.2004, 126, 15378–15379. DOI: 10.1021/ja0446294 (d) Fanourakis, A.; Williams, B. D.; Paterson, K. J.; Phipps, R. J. Enantioselective Intermolecular C–H Amination Directed by a Chiral Cation. J. Am. Chem. Soc. 2021, 143, 10070–10076. DOI: 10.1021/jacs.1c05206
  4. (a) Golding, W. A.; Pearce-Higgins, R.; Phipps, R. J. Site-Selective Cross-Coupling of Remote Chlorides Enabled by Electrostatically Directed Palladium Catalysis. J. Am. Chem. Soc. 2018, 140, 13570–13574. DOI: 10.1021/jacs.8b08686 (b) Golding, W. A.; Schmitt, H. L.; Phipps, R. J. Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C–C and C–N Cross-Coupling of Multiply Chlorinated Arenes through Substrate–Ligand Electrostatic Interactions. J. Am. Chem. Soc. 2020, 142, 21891–21898. DOI: 10.1021/jacs.0c11056
  5. (a) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Catalytic Enantioselective Minisci-Type Addition to Heteroarenes. Science 2018, 360, 419–422. DOI: 1126/science.aar6376 (b) Ermanis, K.; Colgan, A. C.; Proctor, R. S. J.; Hadrys, B. W.; Phipps, R. J.; Goodman, J. M. A Computational and Experimental Investigation of the Origin of Selectivity in the Chiral Phosphoric Acid Catalyzed Enantioselective Minisci Reaction. J. Am. Chem. Soc. 2020, 142, 21091–21101. DOI: 10.1021/jacs.0c09668
  6. Phipps研に留学されていた方から情報提供していただきました。
  7. 関連リンクFace to Face with Robert J. Phippsより

関連リンク

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ジャン=ピエール・ソヴァージュ Jean-Pierre Sauv…
  2. 吉田善一 Zen-ichi Yoshida
  3. Noah Z. Burns ノア・バーンズ
  4. 稲垣伸二 Shinji Inagaki
  5. 山口健太郎 Kentaro Yamaguchi
  6. ケー・シー・ニコラウ K. C. Nicolaou
  7. 小松紘一 Koichi Komatsu
  8. ブルース・リプシュッツ Bruce H. Lipshutz

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ベティ反応 Betti Reaction
  2. サノフィ・アベンティスグループ、「タキソテール」による進行乳癌の生存期間改善効果を発表
  3. C(sp3)-Hアシル化を鍵とするザラゴジン酸Cの全合成
  4. 製薬各社 2010年度 第1四半期決算を発表
  5. Reaxys Prize 2011発表!
  6. 鉄とヒ素から広がる夢の世界
  7. A-Phosパラジウム錯体
  8. JEOL RESONANCE「UltraCOOL プローブ」: 極低温で感度MAX! ①
  9. フリッチュ・ブッテンバーグ・ウィーチェル転位 Fritsch-Buttenberg-Wiechell Rearrangement
  10. 2013年(第29回)日本国際賞 受賞記念講演会

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

注目情報

最新記事

理工系のAI英作文術

概要英語が苦手な人でもAI自動翻訳を使えば、短時間で英語が得意な人に匹敵する英文が書…

Ni(0)/SPoxIm錯体を利用した室温におけるCOの可逆的化学吸着反応

第395回のスポットライトリサーチは、大阪大学大学院 工学研究科 (生越研究室)・山内泰宏さんにお願…

第27回ケムステVシンポ『有機光反応の化学』を開催します!

7月に入り、いよいよ日差しが強まって夏本格化という時期になりました。光のエネルギーを肌で感じられます…

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP