[スポンサーリンク]

世界の化学者データベース

ロバート・フィップス Robert J. Phipps

[スポンサーリンク]

ロバート・フィップス(Robert J. Phipps、1983年7月3日–)は英国の有機化学者である。ケンブリッジ大学准教授。

経歴

2006 インペリアル・カレッジ・ロンドン 修了 (Prof. Alan C. Spivey)
2010 ケンブリッジ大学 博士号取得 (Prof. Matthew J. Gaunt)
2011– カリフォルニア大学バークレー校 博士研究員 (Prof. F. Dean Toste)
2013– ケンブリッジ大学 博士研究員 (Prof. Matthew J. Gaunt)
2014– ケンブリッジ大学 英国王立学会大学研究フェローシップ (特任助教授に相当)
2021– ケンブリッジ大学 准教授

受賞歴

2010 Reaxys Ph.D. Prize
2011–2013 Marie Curie Postdoctoral Fellowship
2014 Royal Society University Research Fellowship
2017 European Research Council Starting Grant (ERC)
2019 RSC Harrison-Meldola Memorial Prize

研究概要

非共有結合性相互作用を活用した反応開発
Phippsは2014年の研究室立ち上げ以降、非共有結合性相互作用に焦点を当てた反応開発を展開している。静電相互作用や水素結合を巧みに活用した反応中間体を設計し、反応位置の制御やエナンチオ選択性の発現に成功している。
1) 非共有結合性相互作用を用いた遷移金属触媒反応
Phippsは基質–触媒間の静電相互作用による種々の位置選択的C–Hボリル化を達成した。例えば、スルホナート部位をもつイリジウム触媒L1を用いるとアンモニウムアルキル基をもつ芳香環のメタ位選択的C–Hボリル化が進行することを見いだした。本反応では、L1上のスルホナートアニオンと、基質上のアンモニウムカチオンとの静電相互作用により芳香環メタ位C–H結合がイリジウムに接近できることが位置選択性の鍵である(1a,1b)。同触媒を用いると、アルキルアミドをもつ芳香環もメタ位選択的にボリル化できる。この場合は、L1のスルホナート部位とアミドN–Hの水素結合形成により位置選択性が発現する(1c)
また、嵩高いイオン対部位をもつ芳香族として、テトラブチルアンモニウムフェニル(もしくはベンジル)スルファートやスルファマートのパラ位選択的C–Hボリル化も達成した。嵩高い対カチオンを用いることで芳香環メタ位近傍の立体反発を大きくしパラ位選択性を発現した(1d)。なお、スルファートおよびスルファマートは反応後容易に対応するアルコール、アミンへと変換できる。

シンコナアルカロイド由来のキラルな対カチオンをもつイオン対ビピリジル配位子L2を用いて、ジアリールメチルアミドもしくはジアリールホスフィンアミドのメタ位選択的かつエナンチオ選択的C–Hボリル化を達成した(2)。配位子L2は、スルホナート部位とアミドN–Hとの水素結合形成によるメタ位選択性発現と、キラルな対カチオンによるエナンチオ選択性制御の二つの役割を担う。

また、静電相互作用を用いる戦略をロジウム触媒によるC–Hアミノ化 (Du Bois C–Hアミノ化)にも応用した。Du Boisアミノ化反応(3a,3b)で用いられるRh2(esp)2触媒をイオン性触媒へと改変することで、4-アリールブタノール類の分子間不斉Du Boisアミノ化を達成した(3c)。対カチオンにシンコナアルカロイド由来のアンモニウム(L3)をもつスルホナートesp類縁体配位子(sulfonesp)の開発が鍵であり、不斉発現のみならず、Rh2(esp)2触媒と比較して高収率で対応するアミノ化体を与える。L3のキノリン窒素原子がロジウムにアキシャル配位すること、スルホナート部位が4-アリールブタノールのヒドロキシ基と水素結合することが、高収率とエナンチオ選択性の両方に重要であることが示唆されている。

基質–触媒間の静電相互作用による精密反応制御をパラジウム触媒によるハロアレーンのカップリング反応にも応用した。Buchwald配位子SPhosもしくはtBuSPhosにスルホナート部位を導入したsSPhosおよびs(tBuSPhos)を用いることで、3,4-ジクロロベンジルスルホンアミドのメタ位選択的な鈴木–宮浦カップリング、薗頭カップリング、Buchwald–Hartwigアミノ化を達成した(4a)。基質のスルホンアミド部位と配位子のスルホナート部位が塩基由来のカリウムカチオンを介して静電相互作用することで、メタ位C–Cl結合がパラジウムへと近接し位置選択的にカップリング反応が進行すると考えられている。
また、炭酸ルビジウム存在下、イオン性配位子sXPhosを用いることで、2,4-ジクロロベンジルスルホンアミドのオルト位選択的鈴木–宮浦カップリングにも成功した(4b)。これら反応を用いれば2,4,5-トリクロロベンジルスルホンアミドに対する逐次的なカップリング反応ができることも示した。

2) キラルブレンステッド酸触媒を用いたエナンチオ選択的ミニスキ反応の開発
Phippsは非共有結合性相互作用を用いた反応制御を、ラジカル反応のエナンチオ選択性制御にも展開している。可視光照射下、キラルブレンステッド酸/可視光レドックス協働触媒条件で、アジン類とレドックス活性エステルとのエナンチオ選択的ミニスキ反応の開発に成功した(5a)。DFT計算を用いた詳細な機構解明研究により、ラジカル付加は可逆であり、その後のアミドの脱プロトン化が不斉発現段階であると結論づけている(5b)

コメント&その他

  • 非常に温和な性格でお兄さんのような関係性で親身に相談にのってくれる(6)
  • 学生時代にスキューバダイビングをやっていたが、今は子供の世話が趣味と言えるくらい家族を大切にしている(6)
  • よく研究室にふらっと現れて”How is your chemistry going?”と尋ねてきて、そこからディスカッションが始まり研究の方針などを定める(6)
  • 徹底した条件検討にこだわり、大量の条件を振って満足のいく最適条件を決定するスタイル(6)
  • 好きな本はトムクランシーの「レッド・オクトーバーを追え」(7)
  • 好きな映画はジャッキー・チェンの代表作「ポリス・ストーリー」(7)

関連文献

  1. (a) Davis, H. J.; Mihai, M. T.; Phipps, R. J. Ion Pair-Directed Regiocontrol in Transition-Metal Catalysis: A Meta-Selective C–H Borylation of Aromatic Quaternary Ammonium Salts. J. Am. Chem. Soc. 2016, 138, 12759−12762. DOI: 10.1021/jacs.6b08164 (b) Mihai, M. T.; Davis, H. J.; Genov, G. R.; Phipps, R. J. Ion Pair-Directed C–H Activation on Flexible Ammonium Salts: Meta-Selective Borylation of Quaternized Phenethylamines and Phenylpropylamines. ACS Catal. 2018, 8, 3764– 3769. DOI: 10.1021/acscatal.8b00423 (c) Davis, H. J.; Genov, G. R.; Phipps, R. J. Meta-Selective C–H Borylation of Benzylamine-, Phenethylamine- and Phenylpropylamine-Derived Amides Enabled by a Single Anionic Ligand. Angew. Chem., Int. Ed. 2017, 56, 13351–13355. DOI: 10.1002/anie.201708967 (d) Mihai, M. T.; Williams, B. D.; Phipps, R. J. Para-Selective C–H Borylation of Common Arene Building Blocks Enabled by Ion Pairing with a Bulky Counter cation. J. Am. Chem. Soc. 2019, 141, 15477–15482. DOI: 10.1021/jacs.9b07267
  2. Genov, G. R.; Douthwaite, J. L.; Lahdenperä, A. S. K.; Gibson, D. C.; Phipps, R. J. Enantioselective remote C–H Activation Directed by a Chiral Cation.Science 2020, 367, 1246–1251. DOI: 1126/science.aba1120
  3. (a) Espino, C. G.; Du Bois, J. A Rh-Catalyzed C–H Insertion Reaction for the Oxidative Conversion of Carbamates to Oxazolidinones. Angew. Chem., Int. Ed. 2001, 40, 598–600. DOI: 10.1002/1521-3773(20010202)40:3<598::AID-ANIE598>3.0.CO;2-9 (b)Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. Synthesis of 1,3-Difunctionalized Amine Derivatives Through Selective C–H Bond Oxidation. J. Am. Chem. Soc. 2001, 123, 6935–6936. DOI: 10.1021/ja011033x (c) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. Expanding the Scope of C–H Amination through Catalyst Design. J. Am. Chem. Soc.2004, 126, 15378–15379. DOI: 10.1021/ja0446294 (d) Fanourakis, A.; Williams, B. D.; Paterson, K. J.; Phipps, R. J. Enantioselective Intermolecular C–H Amination Directed by a Chiral Cation. J. Am. Chem. Soc. 2021, 143, 10070–10076. DOI: 10.1021/jacs.1c05206
  4. (a) Golding, W. A.; Pearce-Higgins, R.; Phipps, R. J. Site-Selective Cross-Coupling of Remote Chlorides Enabled by Electrostatically Directed Palladium Catalysis. J. Am. Chem. Soc. 2018, 140, 13570–13574. DOI: 10.1021/jacs.8b08686 (b) Golding, W. A.; Schmitt, H. L.; Phipps, R. J. Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C–C and C–N Cross-Coupling of Multiply Chlorinated Arenes through Substrate–Ligand Electrostatic Interactions. J. Am. Chem. Soc. 2020, 142, 21891–21898. DOI: 10.1021/jacs.0c11056
  5. (a) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Catalytic Enantioselective Minisci-Type Addition to Heteroarenes. Science 2018, 360, 419–422. DOI: 1126/science.aar6376 (b) Ermanis, K.; Colgan, A. C.; Proctor, R. S. J.; Hadrys, B. W.; Phipps, R. J.; Goodman, J. M. A Computational and Experimental Investigation of the Origin of Selectivity in the Chiral Phosphoric Acid Catalyzed Enantioselective Minisci Reaction. J. Am. Chem. Soc. 2020, 142, 21091–21101. DOI: 10.1021/jacs.0c09668
  6. Phipps研に留学されていた方から情報提供していただきました。
  7. 関連リンクFace to Face with Robert J. Phippsより

関連リンク

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 浅野 圭佑 Keisuke Asano
  2. 向山 光昭 Teruaki Mukaiyama
  3. 伊藤 幸裕 Yukihiro Itoh
  4. 京都賞―受賞化学者一覧
  5. アビー・ドイル Abigail G. Doyle
  6. カール・ジェラッシ Carl Djerassi
  7. クリストファー・ウォルシュ Christopher Walsh
  8. ベン・クラヴァット Benjamin F. Cravatt II…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発
  2. 電子実験ノートSignals Notebookを紹介します ②
  3. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  4. 第19回次世代を担う有機化学シンポジウム
  5. ウギ反応 Ugi Reaction
  6. 櫻井英樹 Hideki Sakurai
  7. 【日産化学 23卒/Zoomウェビナー配信!】START your chemi-story あなたの化学をさがす 研究職限定 キャリアマッチングLIVE
  8. DNAを切らずにゲノム編集-一塩基変換法の開発
  9. 2010年10大化学ニュース
  10. 小児薬、大人用を転用――アステラス、抗真菌剤

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

注目情報

最新記事

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

【ジーシー】新卒採用情報(2024卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP