[スポンサーリンク]

世界の化学者データベース

ロバート・フィップス Robert J. Phipps

[スポンサーリンク]

ロバート・フィップス(Robert J. Phipps、1983年7月3日–)は英国の有機化学者である。ケンブリッジ大学教授。

経歴

2006 インペリアル・カレッジ・ロンドン 修了 (Prof. Alan C. Spivey)
2010 ケンブリッジ大学 博士号取得 (Prof. Matthew J. Gaunt)
2011– カリフォルニア大学バークレー校 博士研究員 (Prof. F. Dean Toste)
2013– ケンブリッジ大学 博士研究員 (Prof. Matthew J. Gaunt)
2014– ケンブリッジ大学 英国王立学会大学研究フェローシップ (特任助教授に相当)
2021 ケンブリッジ大学 准教授
2022 ケンブリッジ大学 教授

受賞歴

2010 Reaxys Ph.D. Prize
2011–2013 Marie Curie Postdoctoral Fellowship
2014 Royal Society University Research Fellowship
2017 European Research Council Starting Grant (ERC)
2019 RSC Harrison-Meldola Memorial Prize

研究概要

非共有結合性相互作用を活用した反応開発
Phippsは2014年の研究室立ち上げ以降、非共有結合性相互作用に焦点を当てた反応開発を展開している。静電相互作用や水素結合を巧みに活用した反応中間体を設計し、反応位置の制御やエナンチオ選択性の発現に成功している。
1) 非共有結合性相互作用を用いた遷移金属触媒反応
Phippsは基質–触媒間の静電相互作用による種々の位置選択的C–Hボリル化を達成した。例えば、スルホナート部位をもつイリジウム触媒L1を用いるとアンモニウムアルキル基をもつ芳香環のメタ位選択的C–Hボリル化が進行することを見いだした。本反応では、L1上のスルホナートアニオンと、基質上のアンモニウムカチオンとの静電相互作用により芳香環メタ位C–H結合がイリジウムに接近できることが位置選択性の鍵である(1a,1b)。同触媒を用いると、アルキルアミドをもつ芳香環もメタ位選択的にボリル化できる。この場合は、L1のスルホナート部位とアミドN–Hの水素結合形成により位置選択性が発現する(1c)
また、嵩高いイオン対部位をもつ芳香族として、テトラブチルアンモニウムフェニル(もしくはベンジル)スルファートやスルファマートのパラ位選択的C–Hボリル化も達成した。嵩高い対カチオンを用いることで芳香環メタ位近傍の立体反発を大きくしパラ位選択性を発現した(1d)。なお、スルファートおよびスルファマートは反応後容易に対応するアルコール、アミンへと変換できる。

シンコナアルカロイド由来のキラルな対カチオンをもつイオン対ビピリジル配位子L2を用いて、ジアリールメチルアミドもしくはジアリールホスフィンアミドのメタ位選択的かつエナンチオ選択的C–Hボリル化を達成した(2)。配位子L2は、スルホナート部位とアミドN–Hとの水素結合形成によるメタ位選択性発現と、キラルな対カチオンによるエナンチオ選択性制御の二つの役割を担う。

また、静電相互作用を用いる戦略をロジウム触媒によるC–Hアミノ化 (Du Bois C–Hアミノ化)にも応用した。Du Boisアミノ化反応(3a,3b)で用いられるRh2(esp)2触媒をイオン性触媒へと改変することで、4-アリールブタノール類の分子間不斉Du Boisアミノ化を達成した(3c)。対カチオンにシンコナアルカロイド由来のアンモニウム(L3)をもつスルホナートesp類縁体配位子(sulfonesp)の開発が鍵であり、不斉発現のみならず、Rh2(esp)2触媒と比較して高収率で対応するアミノ化体を与える。L3のキノリン窒素原子がロジウムにアキシャル配位すること、スルホナート部位が4-アリールブタノールのヒドロキシ基と水素結合することが、高収率とエナンチオ選択性の両方に重要であることが示唆されている。

基質–触媒間の静電相互作用による精密反応制御をパラジウム触媒によるハロアレーンのカップリング反応にも応用した。Buchwald配位子SPhosもしくはtBuSPhosにスルホナート部位を導入したsSPhosおよびs(tBuSPhos)を用いることで、3,4-ジクロロベンジルスルホンアミドのメタ位選択的な鈴木–宮浦カップリング、薗頭カップリング、Buchwald–Hartwigアミノ化を達成した(4a)。基質のスルホンアミド部位と配位子のスルホナート部位が塩基由来のカリウムカチオンを介して静電相互作用することで、メタ位C–Cl結合がパラジウムへと近接し位置選択的にカップリング反応が進行すると考えられている。
また、炭酸ルビジウム存在下、イオン性配位子sXPhosを用いることで、2,4-ジクロロベンジルスルホンアミドのオルト位選択的鈴木–宮浦カップリングにも成功した(4b)。これら反応を用いれば2,4,5-トリクロロベンジルスルホンアミドに対する逐次的なカップリング反応ができることも示した。

2) キラルブレンステッド酸触媒を用いたエナンチオ選択的ミニスキ反応の開発
Phippsは非共有結合性相互作用を用いた反応制御を、ラジカル反応のエナンチオ選択性制御にも展開している。可視光照射下、キラルブレンステッド酸/可視光レドックス協働触媒条件で、アジン類とレドックス活性エステルとのエナンチオ選択的ミニスキ反応の開発に成功した(5a)。DFT計算を用いた詳細な機構解明研究により、ラジカル付加は可逆であり、その後のアミドの脱プロトン化が不斉発現段階であると結論づけている(5b)

コメント&その他

  • 非常に温和な性格でお兄さんのような関係性で親身に相談にのってくれる(6)
  • 学生時代にスキューバダイビングをやっていたが、今は子供の世話が趣味と言えるくらい家族を大切にしている(6)
  • よく研究室にふらっと現れて”How is your chemistry going?”と尋ねてきて、そこからディスカッションが始まり研究の方針などを定める(6)
  • 徹底した条件検討にこだわり、大量の条件を振って満足のいく最適条件を決定するスタイル(6)
  • 好きな本はトムクランシーの「レッド・オクトーバーを追え」(7)
  • 好きな映画はジャッキー・チェンの代表作「ポリス・ストーリー」(7)

関連文献

  1. (a) Davis, H. J.; Mihai, M. T.; Phipps, R. J. Ion Pair-Directed Regiocontrol in Transition-Metal Catalysis: A Meta-Selective C–H Borylation of Aromatic Quaternary Ammonium Salts. J. Am. Chem. Soc. 2016, 138, 12759−12762. DOI: 10.1021/jacs.6b08164 (b) Mihai, M. T.; Davis, H. J.; Genov, G. R.; Phipps, R. J. Ion Pair-Directed C–H Activation on Flexible Ammonium Salts: Meta-Selective Borylation of Quaternized Phenethylamines and Phenylpropylamines. ACS Catal. 2018, 8, 3764– 3769. DOI: 10.1021/acscatal.8b00423 (c) Davis, H. J.; Genov, G. R.; Phipps, R. J. Meta-Selective C–H Borylation of Benzylamine-, Phenethylamine- and Phenylpropylamine-Derived Amides Enabled by a Single Anionic Ligand. Angew. Chem., Int. Ed. 2017, 56, 13351–13355. DOI: 10.1002/anie.201708967 (d) Mihai, M. T.; Williams, B. D.; Phipps, R. J. Para-Selective C–H Borylation of Common Arene Building Blocks Enabled by Ion Pairing with a Bulky Counter cation. J. Am. Chem. Soc. 2019, 141, 15477–15482. DOI: 10.1021/jacs.9b07267
  2. Genov, G. R.; Douthwaite, J. L.; Lahdenperä, A. S. K.; Gibson, D. C.; Phipps, R. J. Enantioselective remote C–H Activation Directed by a Chiral Cation.Science 2020, 367, 1246–1251. DOI: 1126/science.aba1120
  3. (a) Espino, C. G.; Du Bois, J. A Rh-Catalyzed C–H Insertion Reaction for the Oxidative Conversion of Carbamates to Oxazolidinones. Angew. Chem., Int. Ed. 2001, 40, 598–600. DOI: 10.1002/1521-3773(20010202)40:3<598::AID-ANIE598>3.0.CO;2-9 (b)Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. Synthesis of 1,3-Difunctionalized Amine Derivatives Through Selective C–H Bond Oxidation. J. Am. Chem. Soc. 2001, 123, 6935–6936. DOI: 10.1021/ja011033x (c) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. Expanding the Scope of C–H Amination through Catalyst Design. J. Am. Chem. Soc.2004, 126, 15378–15379. DOI: 10.1021/ja0446294 (d) Fanourakis, A.; Williams, B. D.; Paterson, K. J.; Phipps, R. J. Enantioselective Intermolecular C–H Amination Directed by a Chiral Cation. J. Am. Chem. Soc. 2021, 143, 10070–10076. DOI: 10.1021/jacs.1c05206
  4. (a) Golding, W. A.; Pearce-Higgins, R.; Phipps, R. J. Site-Selective Cross-Coupling of Remote Chlorides Enabled by Electrostatically Directed Palladium Catalysis. J. Am. Chem. Soc. 2018, 140, 13570–13574. DOI: 10.1021/jacs.8b08686 (b) Golding, W. A.; Schmitt, H. L.; Phipps, R. J. Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C–C and C–N Cross-Coupling of Multiply Chlorinated Arenes through Substrate–Ligand Electrostatic Interactions. J. Am. Chem. Soc. 2020, 142, 21891–21898. DOI: 10.1021/jacs.0c11056
  5. (a) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Catalytic Enantioselective Minisci-Type Addition to Heteroarenes. Science 2018, 360, 419–422. DOI: 1126/science.aar6376 (b) Ermanis, K.; Colgan, A. C.; Proctor, R. S. J.; Hadrys, B. W.; Phipps, R. J.; Goodman, J. M. A Computational and Experimental Investigation of the Origin of Selectivity in the Chiral Phosphoric Acid Catalyzed Enantioselective Minisci Reaction. J. Am. Chem. Soc. 2020, 142, 21091–21101. DOI: 10.1021/jacs.0c09668
  6. Phipps研に留学されていた方から情報提供していただきました。
  7. 関連リンクFace to Face with Robert J. Phippsより

関連リンク

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. リチャード・ホルム Richard H. Holm
  2. 渡邉 峻一郎 Shun Watanabe
  3. 森謙治 Kenji Mori
  4. キャロライン・ベルトッツィ Carolyn R. Bertozz…
  5. 吉良 満夫 Mitsuo Kira
  6. ロバート・グラブス Robert H. Grubbs
  7. スティーブン・レイ Steven V. Ley
  8. 香月 勗 Tsutomu Katsuki

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 近年の量子ドットディスプレイ業界の動向
  2. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組み込む
  3. 「話すのが得意」でも面接が通らない人の特徴
  4. 家庭での食品保存を簡単にする新製品「Deliéa」
  5. バイエルワークショップ Bayer Synthetic Organic Chemistry Workshop 2018
  6. 澤本 光男 Mitsuo Sawamoto
  7. 化学五輪、「金」の高3連続出場 7月に東京開催
  8. 味の素と元社員が和解 人工甘味料の特許訴訟
  9. ヘキサニトロヘキサアザイソウルチタン / Hexanitrohexaazaisowurtzitane (HNIW)
  10. クライン・プレログ表記法 Klyne-Prelog Nomenclature System

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用

開催日:2024/07/17 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

そうだ、アルミニウムを丸裸にしてみようじゃないか

N-ヘテロ環ボリロキシ配位子を用いることで、アニオン性かつ非環式、さらには“裸“という極めて不安定な…

カルベンがアシストする芳香環の開環反応

カルベンがアシストする芳香環の開環反応が報告された。カルベンとアジドによる環形成でナイトレンインダゾ…

有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・C–O結合ホモリシス・ハロカルビン・触媒的バイオマス分解

有機合成化学協会が発行する有機合成化学協会誌、2024年7月号がオンライン公開されています。…

分子研「第139回分子科学フォーラム」に参加してみた

bergです。この度は2024年7月3日(水)にオンラインにて開催された、自然科学研究機構 分子科学…

光の色で反応性が変わる”波長選択的”な有機光触媒

照射する可視光の波長によって異なる反応性を示す、新規可視光レドックス触媒反応が開発された。赤色光照射…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP