[スポンサーリンク]

スポットライトリサーチ

電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応

[スポンサーリンク]

第151回のスポットライトリサーチは、東京農工大学農学府・千葉一裕研究室今田泰史 (いまだ やすし)さんです。

Waldvogel研究室(マインツ大学)では電気化学を活用した複雑化合物の有機合成反応開発を主眼とした研究に取り組んでいます。今田さんはWaldvogel研に短期留学され、完結させた仕事を第一著者論文として報告。本成果はAngew. Chem. Int. Ed.のVIP (very important paper)に選ばれました。環境調和型合成などの文脈から近年改めて注目を集める電解有機合成ですが、その先端的成果をご覧いただければと存じます。

“Metal‐ and Reagent‐Free Dehydrogenative Formal Benzyl–Aryl Cross‐Coupling by Anodic Activation in 1,1,1,3,3,3‐Hexafluoropropan‐2‐ol”
Imada, Y.; Röckl, J. L.; Wiebe, A.; Gieshoff, T.; Schollmeyer, D.;  Chiba, K.; Franke, R.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, doi:10.1002/anie.201804997

Q1. 今回達成されたのはどんな研究ですか?簡単にご説明ください

電気化学的手法を用いた、4-メチルフェノール誘導体のベンジル位でのクロスカップリング反応の開発です。

第1段階目の反応として、陽極2電子酸化によって中間体(キノンメチド)を生成させ、ベンジル位選択的に1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP)を付加させます。ここで、HFIP (pKa=9.3)よりもpKaの大きな塩基(DIPEAなど)を添加してHFIPを脱プロトン化するのが鍵となります。HFIPエーテル中間体は単離も可能で、ベンジルハロゲンよりも安定な中間体となっているので扱いも容易です。続く2段階目の反応として、酸触媒(ブレンステッド酸またはルイス酸)によりC-O結合を活性化し、求核剤(芳香環/複素環)をフェノール誘導体のベンジル位へ付加させることで、カップリング体を得ます。スケールアップや天然化合物などを用いたLate-stage functionalizationも実現することができました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本反応の有用性を示すべく、基質選択の段階から注意を払いました。ただ闇雲にtableの誘導体数を増やすのではなく、できる生成物の骨格を事前によく考え、天然化合物に見られる構造や生理活性物質の重要骨格など、できる限り反応の価値を訴求できるものを選択しました1)。フェノール誘導体とBenzo[b]thiopheneのベンジル位でのカップリング体は、40 mmolでのスケールでも良好な収率で得られる(収量: 6.9 g)ことがわかり、産業スケールへの応用も期待できるのではないかと考えています。また、複数の天然物を求核剤として用い、late-stage functionalizationとしての応用も可能であることを示せて終われたのも良かったです。自己満足で終わらず、誰かが使いたくなるような反応開発をしたい想いがあったので、今回のプロジェクトはやりがいとしても大きなものがありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

1段階目の反応において、フェノール誘導体のオリゴマー/ポリマー化を抑制し、目的のベンジルHFIPエーテルの形成を選択的に行った点です。通常、陽極酸化により無保護のフェノールを活性化しようとすると、容易にポリマー化が進行してしまい、電極表面にポリマーが蓄積してしまいます。HFIPエーテルの形成は少数ながら過去にも報告がありました2)。しかし、HFIPはその求核性の低さが売りの溶媒でもあり、フェノールの高い求核性を考慮すると、HFIPの付加よりもフェノール同士の反応が支配的になるのは当然です。そこで、HFIP(pKa=9.3)よりもpKaの大きな塩基(DIPEAなど)を添加してあらかじめHFIPアニオンの濃度を高めておくことで、HFIP付加が進行し易くなると考えました。陰極還元でもHFIPアニオンは生成しますが、やはり塩基の添加が必須でした。

Q4. 将来は化学とどう関わっていきたいですか?

今後は生体分子(核酸など)なども扱い、自分が特に精通している有機電気化学の知見と技術を組み合わせて、研究領域を広げていきたいと考えています。その過程で、事業性のあるものを生み出し産業的な価値も提案していける化学者になりたいです。
また、大きな野望ではありますが、もっと先の将来(50代になる頃)には政治家となって、日本を今以上にサイエンス&テクノロジーの研究をリードしていける国にしたいと考えています。教育制度や研究機関の改革も行い、科学研究に潤沢な資金を充てられる経済システムを作り上げたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

まだまだ未熟な化学者の卵ではありますが、自分たちの研究成果が一人でも多くの化学者の関心を得られるような(そしてインスピレーションを与えられるような)研究を行っていきたいと考えています。学会などで読者の皆様とお会いする機会がございましたら、化学の話題から雑談までざっくばらんに議論させてください。今後ともよろしくお願いいたします。

参考文献

  1. T. A. Grese, S. Cho, H. U. Bryant, H. W. Cole, A. L. Glasebrook, D. E. Magee, D.L. Phillips, E. R. Rowley, L. L. Short, Bioorg. & Med. Chem. Lett. 1996, 6, 201–206.
  2. a) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317-12324. b) T. Tajima, H. Kurihara, S. Shimizu, H. Tateno, Electrochemistry 2013, 81, 353–355.

研究者の略歴

名前:今田 泰史 (いまだ やすし)
所属:東京農工大学 農学府 応用生命化学専攻 生物有機化学研究室 (指導教員: 千葉一裕 教授) 博士課程1年
日本学術振興会特別研究員 (DC1)
研究テーマ: 電気有機化学、有機合成化学

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 米国へ講演旅行にいってきました:Part I
  2. 分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)
  3. 事故を未然に防ごう~確認しておきたい心構えと対策~
  4. 2009年ノーベル化学賞『リボソームの構造と機能の解明』
  5. 蒲郡市生命の海科学館で化学しようよ
  6. C70の中に水分子を閉じ込める
  7. サーモサイエンティフィック「Exactive Plus」: 誰で…
  8. 光を吸わないはずの重原子化合物でも光反応が進行するのはなぜか?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アメリ化学会創造的有機合成化学賞・受賞者一覧
  2. ダイセル、化学技術賞を受賞 ウェハーレンズ開発と製品化
  3. 「2010年トップ3を目指す」万有製薬平手社長
  4. 2008年10大化学ニュース2
  5. 経営戦略を成功に導く知財戦略【実践事例集】
  6. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  7. ヌノ・マウリド Nuno Maulide
  8. Nature Chemistry:Research Highlight
  9. ノーベル賞親子2代受賞、コーンバーグさんが東大で講演
  10. 第56回―「メタボロミクスを志向した質量分析技術の開発」Gary Siuzdak教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年7月
« 6月   8月 »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

元素手帳2022

毎年これが届くと、ああもう今年も終わりかあと思うようになりました。そう、読者…

ダイセル発、にんにく由来の機能性表示食品「S-アリルシステイン」

株式会社ダイセルは、カラダの疲れを感じている方のための機能性表示食品「S-アリルシステイン」を消費者…

Delta 6.0.0 for Win & Macがリリース!

NMR解析ソフトDeltaの最新版6.0.0がリリースされました!&nb…

こんなのアリ!?ギ酸でヒドロカルボキシル化

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラ…

ポンコツ博士研究員の海外奮闘録 ケムステ異色連載記

本稿は,世間一般にほとんど知られていない地方私立大学で学位を修了し,エリートでもなく何も成し遂げてい…

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP