[スポンサーリンク]

スポットライトリサーチ

電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応

[スポンサーリンク]

第151回のスポットライトリサーチは、東京農工大学農学府・千葉一裕研究室今田泰史 (いまだ やすし)さんです。

Waldvogel研究室(マインツ大学)では電気化学を活用した複雑化合物の有機合成反応開発を主眼とした研究に取り組んでいます。今田さんはWaldvogel研に短期留学され、完結させた仕事を第一著者論文として報告。本成果はAngew. Chem. Int. Ed.のVIP (very important paper)に選ばれました。環境調和型合成などの文脈から近年改めて注目を集める電解有機合成ですが、その先端的成果をご覧いただければと存じます。

“Metal‐ and Reagent‐Free Dehydrogenative Formal Benzyl–Aryl Cross‐Coupling by Anodic Activation in 1,1,1,3,3,3‐Hexafluoropropan‐2‐ol”
Imada, Y.; Röckl, J. L.; Wiebe, A.; Gieshoff, T.; Schollmeyer, D.;  Chiba, K.; Franke, R.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, doi:10.1002/anie.201804997

Q1. 今回達成されたのはどんな研究ですか?簡単にご説明ください

電気化学的手法を用いた、4-メチルフェノール誘導体のベンジル位でのクロスカップリング反応の開発です。

第1段階目の反応として、陽極2電子酸化によって中間体(キノンメチド)を生成させ、ベンジル位選択的に1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP)を付加させます。ここで、HFIP (pKa=9.3)よりもpKaの大きな塩基(DIPEAなど)を添加してHFIPを脱プロトン化するのが鍵となります。HFIPエーテル中間体は単離も可能で、ベンジルハロゲンよりも安定な中間体となっているので扱いも容易です。続く2段階目の反応として、酸触媒(ブレンステッド酸またはルイス酸)によりC-O結合を活性化し、求核剤(芳香環/複素環)をフェノール誘導体のベンジル位へ付加させることで、カップリング体を得ます。スケールアップや天然化合物などを用いたLate-stage functionalizationも実現することができました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本反応の有用性を示すべく、基質選択の段階から注意を払いました。ただ闇雲にtableの誘導体数を増やすのではなく、できる生成物の骨格を事前によく考え、天然化合物に見られる構造や生理活性物質の重要骨格など、できる限り反応の価値を訴求できるものを選択しました1)。フェノール誘導体とBenzo[b]thiopheneのベンジル位でのカップリング体は、40 mmolでのスケールでも良好な収率で得られる(収量: 6.9 g)ことがわかり、産業スケールへの応用も期待できるのではないかと考えています。また、複数の天然物を求核剤として用い、late-stage functionalizationとしての応用も可能であることを示せて終われたのも良かったです。自己満足で終わらず、誰かが使いたくなるような反応開発をしたい想いがあったので、今回のプロジェクトはやりがいとしても大きなものがありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

1段階目の反応において、フェノール誘導体のオリゴマー/ポリマー化を抑制し、目的のベンジルHFIPエーテルの形成を選択的に行った点です。通常、陽極酸化により無保護のフェノールを活性化しようとすると、容易にポリマー化が進行してしまい、電極表面にポリマーが蓄積してしまいます。HFIPエーテルの形成は少数ながら過去にも報告がありました2)。しかし、HFIPはその求核性の低さが売りの溶媒でもあり、フェノールの高い求核性を考慮すると、HFIPの付加よりもフェノール同士の反応が支配的になるのは当然です。そこで、HFIP(pKa=9.3)よりもpKaの大きな塩基(DIPEAなど)を添加してあらかじめHFIPアニオンの濃度を高めておくことで、HFIP付加が進行し易くなると考えました。陰極還元でもHFIPアニオンは生成しますが、やはり塩基の添加が必須でした。

Q4. 将来は化学とどう関わっていきたいですか?

今後は生体分子(核酸など)なども扱い、自分が特に精通している有機電気化学の知見と技術を組み合わせて、研究領域を広げていきたいと考えています。その過程で、事業性のあるものを生み出し産業的な価値も提案していける化学者になりたいです。
また、大きな野望ではありますが、もっと先の将来(50代になる頃)には政治家となって、日本を今以上にサイエンス&テクノロジーの研究をリードしていける国にしたいと考えています。教育制度や研究機関の改革も行い、科学研究に潤沢な資金を充てられる経済システムを作り上げたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

まだまだ未熟な化学者の卵ではありますが、自分たちの研究成果が一人でも多くの化学者の関心を得られるような(そしてインスピレーションを与えられるような)研究を行っていきたいと考えています。学会などで読者の皆様とお会いする機会がございましたら、化学の話題から雑談までざっくばらんに議論させてください。今後ともよろしくお願いいたします。

参考文献

  1. T. A. Grese, S. Cho, H. U. Bryant, H. W. Cole, A. L. Glasebrook, D. E. Magee, D.L. Phillips, E. R. Rowley, L. L. Short, Bioorg. & Med. Chem. Lett. 1996, 6, 201–206.
  2. a) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317-12324. b) T. Tajima, H. Kurihara, S. Shimizu, H. Tateno, Electrochemistry 2013, 81, 353–355.

研究者の略歴

名前:今田 泰史 (いまだ やすし)
所属:東京農工大学 農学府 応用生命化学専攻 生物有機化学研究室 (指導教員: 千葉一裕 教授) 博士課程1年
日本学術振興会特別研究員 (DC1)
研究テーマ: 電気有機化学、有機合成化学

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機アジド(2):爆発性
  2. 周期表の形はこれでいいのか? –その 1: H と He の位置…
  3. 若手研究者vsノーベル賞受賞者 【基礎編】
  4. 有機反応を俯瞰する ーヘテロ環合成: C—C 結合で切る
  5. 捏造は研究室の中だけの問題か?
  6. 有機合成化学 vs. 合成生物学 ― 将来の「薬作り」を席巻する…
  7. ルテニウム触媒によるC-C結合活性化を介した水素移動付加環化型カ…
  8. ライバルのラボで大発見!そのときあなたはどうする?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 自動車のスリ傷を高熱で自己修復する塗料
  2. ジブロモインジゴ dibromoindigo
  3. J-STAGE新デザイン評価版公開 ― フィードバックを送ろう
  4. Metal-Organic Frameworks: Applications in Separations and Catalysis
  5. ウルリッヒ・ウィーズナー Ulrich Wiesner
  6. 求電子的トリフルオロメチル化 Electrophilic Trifluoromethylation
  7. 京都賞―受賞化学者一覧
  8. 2017年(第33回)日本国際賞受賞者 講演会
  9. ナフサ、25年ぶり高値・4―6月国産価格
  10. フラストレイティド・ルイスペア Frustrated Lewis Pair

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

最新プリント配線板技術ロードマップセミナー開催発表!

新型コロナウイルス感染症(COVID-19)の流行拡大に伴い、国内でも多くの学会やシンポジウムが中止…

荘司 長三 Osami Shoji

荘司 長三(しょうじ おさみ)は、日本の化学者である(写真はこちらより引用)。名古屋大学理学部教授。…

合成化学者のための固体DNP-NMR

先日、2020年7月7日の第5回ケムステVシンポで山東先生による溶液DNP-NMRの利用に関するご講…

第104回―「生体分子を用いる有機エレクトロニクス」David Cahen教授

第104回の海外化学者インタビューは、デヴィッド・カーヘン教授です。ワイツマン研究所化学科・マテリア…

新型コロナウイルスをブロックする「N95マスクの95って一体何?」などN95マスクの秘密が一発で分かるムービーが登場

新型コロナウイルス感染症(COVID-19)の発生以来、マスクが世界的に注目を集めるようになり、当初…

ジャネット・M・ガルシア Jeannette M. Garcia

ジャネット・M・ガルシア(Jeannette M. Garcia, 19xx年xx月xx日-)は、ア…

導電性ゲル Conducting Gels: 流れない流体に電気を流すお話

「液体のような」相と「固体のような」相、2つの相を持つゲルは様々な分野で用いられています。今回はその…

化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門と銘打ったこのコーナーも、今回で4回目となりました。…

Chem-Station Twitter

PAGE TOP