[スポンサーリンク]

スポットライトリサーチ

電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応

[スポンサーリンク]

第151回のスポットライトリサーチは、東京農工大学農学府・千葉一裕研究室今田泰史 (いまだ やすし)さんです。

Waldvogel研究室(マインツ大学)では電気化学を活用した複雑化合物の有機合成反応開発を主眼とした研究に取り組んでいます。今田さんはWaldvogel研に短期留学され、完結させた仕事を第一著者論文として報告。本成果はAngew. Chem. Int. Ed.のVIP (very important paper)に選ばれました。環境調和型合成などの文脈から近年改めて注目を集める電解有機合成ですが、その先端的成果をご覧いただければと存じます。

“Metal‐ and Reagent‐Free Dehydrogenative Formal Benzyl–Aryl Cross‐Coupling by Anodic Activation in 1,1,1,3,3,3‐Hexafluoropropan‐2‐ol”
Imada, Y.; Röckl, J. L.; Wiebe, A.; Gieshoff, T.; Schollmeyer, D.;  Chiba, K.; Franke, R.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, doi:10.1002/anie.201804997

Q1. 今回達成されたのはどんな研究ですか?簡単にご説明ください

電気化学的手法を用いた、4-メチルフェノール誘導体のベンジル位でのクロスカップリング反応の開発です。

第1段階目の反応として、陽極2電子酸化によって中間体(キノンメチド)を生成させ、ベンジル位選択的に1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP)を付加させます。ここで、HFIP (pKa=9.3)よりもpKaの大きな塩基(DIPEAなど)を添加してHFIPを脱プロトン化するのが鍵となります。HFIPエーテル中間体は単離も可能で、ベンジルハロゲンよりも安定な中間体となっているので扱いも容易です。続く2段階目の反応として、酸触媒(ブレンステッド酸またはルイス酸)によりC-O結合を活性化し、求核剤(芳香環/複素環)をフェノール誘導体のベンジル位へ付加させることで、カップリング体を得ます。スケールアップや天然化合物などを用いたLate-stage functionalizationも実現することができました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本反応の有用性を示すべく、基質選択の段階から注意を払いました。ただ闇雲にtableの誘導体数を増やすのではなく、できる生成物の骨格を事前によく考え、天然化合物に見られる構造や生理活性物質の重要骨格など、できる限り反応の価値を訴求できるものを選択しました1)。フェノール誘導体とBenzo[b]thiopheneのベンジル位でのカップリング体は、40 mmolでのスケールでも良好な収率で得られる(収量: 6.9 g)ことがわかり、産業スケールへの応用も期待できるのではないかと考えています。また、複数の天然物を求核剤として用い、late-stage functionalizationとしての応用も可能であることを示せて終われたのも良かったです。自己満足で終わらず、誰かが使いたくなるような反応開発をしたい想いがあったので、今回のプロジェクトはやりがいとしても大きなものがありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

1段階目の反応において、フェノール誘導体のオリゴマー/ポリマー化を抑制し、目的のベンジルHFIPエーテルの形成を選択的に行った点です。通常、陽極酸化により無保護のフェノールを活性化しようとすると、容易にポリマー化が進行してしまい、電極表面にポリマーが蓄積してしまいます。HFIPエーテルの形成は少数ながら過去にも報告がありました2)。しかし、HFIPはその求核性の低さが売りの溶媒でもあり、フェノールの高い求核性を考慮すると、HFIPの付加よりもフェノール同士の反応が支配的になるのは当然です。そこで、HFIP(pKa=9.3)よりもpKaの大きな塩基(DIPEAなど)を添加してあらかじめHFIPアニオンの濃度を高めておくことで、HFIP付加が進行し易くなると考えました。陰極還元でもHFIPアニオンは生成しますが、やはり塩基の添加が必須でした。

Q4. 将来は化学とどう関わっていきたいですか?

今後は生体分子(核酸など)なども扱い、自分が特に精通している有機電気化学の知見と技術を組み合わせて、研究領域を広げていきたいと考えています。その過程で、事業性のあるものを生み出し産業的な価値も提案していける化学者になりたいです。
また、大きな野望ではありますが、もっと先の将来(50代になる頃)には政治家となって、日本を今以上にサイエンス&テクノロジーの研究をリードしていける国にしたいと考えています。教育制度や研究機関の改革も行い、科学研究に潤沢な資金を充てられる経済システムを作り上げたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

まだまだ未熟な化学者の卵ではありますが、自分たちの研究成果が一人でも多くの化学者の関心を得られるような(そしてインスピレーションを与えられるような)研究を行っていきたいと考えています。学会などで読者の皆様とお会いする機会がございましたら、化学の話題から雑談までざっくばらんに議論させてください。今後ともよろしくお願いいたします。

参考文献

  1. T. A. Grese, S. Cho, H. U. Bryant, H. W. Cole, A. L. Glasebrook, D. E. Magee, D.L. Phillips, E. R. Rowley, L. L. Short, Bioorg. & Med. Chem. Lett. 1996, 6, 201–206.
  2. a) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317-12324. b) T. Tajima, H. Kurihara, S. Shimizu, H. Tateno, Electrochemistry 2013, 81, 353–355.

研究者の略歴

名前:今田 泰史 (いまだ やすし)
所属:東京農工大学 農学府 応用生命化学専攻 生物有機化学研究室 (指導教員: 千葉一裕 教授) 博士課程1年
日本学術振興会特別研究員 (DC1)
研究テーマ: 電気有機化学、有機合成化学

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アメリカ企業研究員の生活③:新入社員の採用プロセス
  2. 狙いを定めて、炭素-フッ素結合の変換!~光触媒とスズの協働作用~…
  3. 目指せPlanar!反芳香族性NIR色素の開発
  4. 学術オンラインコンテンツ紹介(Sigma-Aldrichバージョ…
  5. sinceの使い方
  6. 化学に耳をすませば
  7. 日本化学会ケムステイブニングミキサーへのお誘い
  8. 室温、中性条件での二トリルの加水分解

注目情報

ピックアップ記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」③(解答編)
  2. 2020年ケムステ人気記事ランキング
  3. ブラシノステロイド (brassinosteroid)
  4. 固体NMR
  5. 第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士
  6. マテリアルズ・インフォマティクスにおけるデータ0からの初期データ戦略
  7. パラムジット・アローラ Paramjit S. Arora
  8. 個性あるTOC
  9. 原子力機構大洗研 150時間連続で水素製造 高温ガス炉 実用化へ大きく前進
  10. エノールエーテルからα-三級ジアルキルエーテルをつくる

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP