[スポンサーリンク]

一般的な話題

単分子の電気化学反応を追う!EC-TERSとは?

[スポンサーリンク]

史上初の電池として知られるボルタ電池が開発された1799年から220年あまり、電気化学反応は広く研究されており、すでに解明されている反応だという認識の方も少なくないかもしれません。しかし、測定技術の発展によっていま、原子レベルの局所的な反応メカニズムが場所によって異なることが明らかになってきています。そこで、電気化学反応を単分子レベルで調べられる最先端の手法について解説します。

電気化学反応の究極的な理解には、単分子レベルの測定が必要

電気化学反応は、電極表面と分子の間の電子の受け渡しを介する化学反応です。溶液中の電極に電流を流して物質を分解したり、逆に化学反応から電流を取り出したりすることできるため、電気・化学エネルギー変換と呼ばれることもあります。蓄電池や水素発生に用いられることから、来るカーボンニュートラル時代に向けて詳細な理解が求められている反応です。
近年の研究で、電気化学反応の活性は、電極表面に並ぶ金属原子ひとつの欠陥や、一原子分の段差(ステップ)などの単原子・分子レベルの微細な構造に大きく影響を受けることがわかってきました(1)。つまり、この反応を究極的に理解するためには、反応物分子が電極表面のどこに近づき、どのように電子を受け取り、生成物となるか、ひとつひとつの原子・分子の反応を「見る」必要があるということです(図1)。

図1. 電気化学セルの電極上の単分子レベルの構造が反応メカニズムに影響する

単分子測定の進化 EC-TERSに至るまで

では、ひとつひとつの原子・分子を見るためには、どのような手法があるでしょうか。
真空中や大気中において、先端が原子ひとつになっている金属探針を使って、表面をなぞることで原子を可視化する走査トンネル顕微鏡(STM)という手法が、1980年代以降発展してきました。例えば、炭素で構成されるグラファイト(HOPG)表面をなぞると、炭素原子が並んでいる形をはっきりと「見る」ことができます(図2)。

図2. HOPG表面のSTM像

この手法を溶液中の電極表面に適用すると、電気化学反応を起こしている電極表面を「見る」ことができます。電気化学(EC)とSTMを組み合わせて、EC-STMと呼びます。この手法で、例えば、グラファイト表面が電気化学的に酸化されて削られていく様子を捉えることができます(図3)。

図3. 酸化反応前後のHOPG表面のEC-STM像

しかし、これだけでは、電気化学反応を「見た」ことにはなりません。反応の結果として生じる形状の変化は捉えられても、一つひとつの分子の動きまでは捉えることができないからです。
詳細な分子の動きを捉えるには、分光学の力を借りるのが有効です。特に、分子に光を照射して散乱光を検出するラマン分光(Raman Spectroscopy)を用いると、分子の振動を捉えることができます。電極表面に近づいて吸着し、電子を受け取る間の分子の振動から、どのように反応が進行するかを推察することができると期待されます。実際に真空中や大気中で、STMとラマン分光を組み合わせた探針増強ラマン分光(TERS)で、ひとつの原子・分子の振動を検出することにすでに成功しています(2), (3)。
そこで、電気化学(EC)とSTMを組み合わせてEC-STMを行ったのと同様に、電気化学(EC)とTERSを組み合わせるのが、EC-TERSです(4)-(6)。分子が電極表面のどこに吸着し、どのように電子を授受して反応が進行するのか、ひとつひとつの分子の動きを描くことで、エネルギー問題を解決しうる電気化学反応のメカニズムを明らかにすることが期待されます(図4)。

図4. 各手法の関係とEC-TERS

EC-TERSのこれから

現在、EC-TERSの信号を捉えることに成功しているのは世界でも数グループのみです(4)-(6)。そのどれもが、ひとつの分子の化学反応を解明するには至っていませんが、日進月歩で技術は進歩しています。ひとつひとつの原子・分子の反応を「見る」ことができる日は近づいています。

電気化学とSTMと光を組み合わせた高度かつ最先端の実験の今後の展開に、注目してみてください!

この研究に関して、月額型のクラウドファンディングを行っています。研究の進捗を追えるリターンがあります。よかったらこちらも覗いてみてください!

単一分子を追える装置で化学反応のメカニズム解明に挑む!(学術系クラウドファンディングサイト(academist)

関連記事

参考文献

  1. Pfisterer, J. H. K.; Liang, Y.; Schneider, O.; Bandarenka, A. S. Direct Instrumental Identification of Catalytically Active Surface Sites. Nature 2017, 549 (7670), 74–77. DOI: 10.1038/nature23661
  2. Lee, J.; Crampton, K. T.; Tallarida, N.; Apkarian, V. A. Visualizing Vibrational Normal Modes of a Single Molecule with Atomically Confined Light. Nature 2019, 568 (7750), 78–82. DOI: 10.1038/s41586-019-1059-9
  3. Jaculbia, R. B.; Imada, H.; Miwa, K.; Iwasa, T.; Takenaka, M.; Yang, B.; Kazuma, E.; Hayazawa, N.; Taketsugu, T.; Kim, Y. Single-Molecule Resonance Raman Effect in a Plasmonic Nanocavity. Nat. Nanotechnol. 2020, 15 (2), 105–110. DOI: 10.1038/s41565-019-0614-8
  4. Zeng, Z. C.; Huang, S. C.; Wu, D. Y.; Meng, L. Y.; Li, M. H.; Huang, T. X.; Zhong, J. H.; Wang, X.; Yang, Z. L.; Ren, B. Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137 (37), 11928–11931. DOI: 10.1021/jacs.5b08143
  5. Kang, G.; Yang, M.; Mattei, M. S.; Schatz, G. C.; Van Duyne, R. P. In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy. Nano Lett. 2019, 19 (3), 2106–2113. DOI: 10.1021/acs.nanolett.9b00313
  6. Yokota, Y.; Hayazawa, N.; Yang, B.; Kazuma, E.; Catalan, F. C. I.; Kim, Y. Systematic Assessment of Benzenethiol Self-Assembled Monolayers on Au(111) as a Standard Sample for Electrochemical Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2019, 123 (5), 2953–2963. DOI: 10.1021/acs.jpcc.8b10829

関連記事

  1. 研究者のためのマテリアルズインフォティクス入門コンテンツ3選【無…
  2. サイエンスアゴラの魅力を聞くー「生活環境化学の部屋」本間先生
  3. 学会に行こう!高校生も研究発表できます
  4. サントリー生命科学研究者支援プログラム SunRiSE
  5. 博士号とは何だったのか - 早稲田ディプロマミル事件?
  6. 2020年の人気記事執筆者からのコメント全文を紹介
  7. 研究者1名からでも始められるMIの検討-スモールスタートに取り組…
  8. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー

注目情報

ピックアップ記事

  1. トロンボキサンA2 /Thromboxane A2
  2. ハリース オゾン分解 Harries Ozonolysis
  3. 2つの触媒反応を”孤立空間”で連続的に行う
  4. 三次元アクアナノシートの創製! 〜ジャイロイド構造が生み出す高速プロトン輸送〜
  5. ぼっち学会参加の極意
  6. ReadCubeを使い倒す!(2)~新着論文チェックにもReadCubeをフル活用!~
  7. ブラン環化 Blanc Cyclization
  8. レビュー多すぎじゃね??
  9. 電解液中のイオンが電気化学反応の選択性を決定する
  10. ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP