[スポンサーリンク]

一般的な話題

単分子の電気化学反応を追う!EC-TERSとは?

[スポンサーリンク]

史上初の電池として知られるボルタ電池が開発された1799年から220年あまり、電気化学反応は広く研究されており、すでに解明されている反応だという認識の方も少なくないかもしれません。しかし、測定技術の発展によっていま、原子レベルの局所的な反応メカニズムが場所によって異なることが明らかになってきています。そこで、電気化学反応を単分子レベルで調べられる最先端の手法について解説します。

電気化学反応の究極的な理解には、単分子レベルの測定が必要

電気化学反応は、電極表面と分子の間の電子の受け渡しを介する化学反応です。溶液中の電極に電流を流して物質を分解したり、逆に化学反応から電流を取り出したりすることできるため、電気・化学エネルギー変換と呼ばれることもあります。蓄電池や水素発生に用いられることから、来るカーボンニュートラル時代に向けて詳細な理解が求められている反応です。
近年の研究で、電気化学反応の活性は、電極表面に並ぶ金属原子ひとつの欠陥や、一原子分の段差(ステップ)などの単原子・分子レベルの微細な構造に大きく影響を受けることがわかってきました(1)。つまり、この反応を究極的に理解するためには、反応物分子が電極表面のどこに近づき、どのように電子を受け取り、生成物となるか、ひとつひとつの原子・分子の反応を「見る」必要があるということです(図1)。

図1. 電気化学セルの電極上の単分子レベルの構造が反応メカニズムに影響する

単分子測定の進化 EC-TERSに至るまで

では、ひとつひとつの原子・分子を見るためには、どのような手法があるでしょうか。
真空中や大気中において、先端が原子ひとつになっている金属探針を使って、表面をなぞることで原子を可視化する走査トンネル顕微鏡(STM)という手法が、1980年代以降発展してきました。例えば、炭素で構成されるグラファイト(HOPG)表面をなぞると、炭素原子が並んでいる形をはっきりと「見る」ことができます(図2)。

図2. HOPG表面のSTM像

この手法を溶液中の電極表面に適用すると、電気化学反応を起こしている電極表面を「見る」ことができます。電気化学(EC)とSTMを組み合わせて、EC-STMと呼びます。この手法で、例えば、グラファイト表面が電気化学的に酸化されて削られていく様子を捉えることができます(図3)。

図3. 酸化反応前後のHOPG表面のEC-STM像

しかし、これだけでは、電気化学反応を「見た」ことにはなりません。反応の結果として生じる形状の変化は捉えられても、一つひとつの分子の動きまでは捉えることができないからです。
詳細な分子の動きを捉えるには、分光学の力を借りるのが有効です。特に、分子に光を照射して散乱光を検出するラマン分光(Raman Spectroscopy)を用いると、分子の振動を捉えることができます。電極表面に近づいて吸着し、電子を受け取る間の分子の振動から、どのように反応が進行するかを推察することができると期待されます。実際に真空中や大気中で、STMとラマン分光を組み合わせた探針増強ラマン分光(TERS)で、ひとつの原子・分子の振動を検出することにすでに成功しています(2), (3)。
そこで、電気化学(EC)とSTMを組み合わせてEC-STMを行ったのと同様に、電気化学(EC)とTERSを組み合わせるのが、EC-TERSです(4)-(6)。分子が電極表面のどこに吸着し、どのように電子を授受して反応が進行するのか、ひとつひとつの分子の動きを描くことで、エネルギー問題を解決しうる電気化学反応のメカニズムを明らかにすることが期待されます(図4)。

図4. 各手法の関係とEC-TERS

EC-TERSのこれから

現在、EC-TERSの信号を捉えることに成功しているのは世界でも数グループのみです(4)-(6)。そのどれもが、ひとつの分子の化学反応を解明するには至っていませんが、日進月歩で技術は進歩しています。ひとつひとつの原子・分子の反応を「見る」ことができる日は近づいています。

電気化学とSTMと光を組み合わせた高度かつ最先端の実験の今後の展開に、注目してみてください!

この研究に関して、月額型のクラウドファンディングを行っています。研究の進捗を追えるリターンがあります。よかったらこちらも覗いてみてください!

単一分子を追える装置で化学反応のメカニズム解明に挑む!(学術系クラウドファンディングサイト(academist)

関連記事

参考文献

  1. Pfisterer, J. H. K.; Liang, Y.; Schneider, O.; Bandarenka, A. S. Direct Instrumental Identification of Catalytically Active Surface Sites. Nature 2017, 549 (7670), 74–77. DOI: 10.1038/nature23661
  2. Lee, J.; Crampton, K. T.; Tallarida, N.; Apkarian, V. A. Visualizing Vibrational Normal Modes of a Single Molecule with Atomically Confined Light. Nature 2019, 568 (7750), 78–82. DOI: 10.1038/s41586-019-1059-9
  3. Jaculbia, R. B.; Imada, H.; Miwa, K.; Iwasa, T.; Takenaka, M.; Yang, B.; Kazuma, E.; Hayazawa, N.; Taketsugu, T.; Kim, Y. Single-Molecule Resonance Raman Effect in a Plasmonic Nanocavity. Nat. Nanotechnol. 2020, 15 (2), 105–110. DOI: 10.1038/s41565-019-0614-8
  4. Zeng, Z. C.; Huang, S. C.; Wu, D. Y.; Meng, L. Y.; Li, M. H.; Huang, T. X.; Zhong, J. H.; Wang, X.; Yang, Z. L.; Ren, B. Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137 (37), 11928–11931. DOI: 10.1021/jacs.5b08143
  5. Kang, G.; Yang, M.; Mattei, M. S.; Schatz, G. C.; Van Duyne, R. P. In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy. Nano Lett. 2019, 19 (3), 2106–2113. DOI: 10.1021/acs.nanolett.9b00313
  6. Yokota, Y.; Hayazawa, N.; Yang, B.; Kazuma, E.; Catalan, F. C. I.; Kim, Y. Systematic Assessment of Benzenethiol Self-Assembled Monolayers on Au(111) as a Standard Sample for Electrochemical Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2019, 123 (5), 2953–2963. DOI: 10.1021/acs.jpcc.8b10829

関連記事

  1. ワムシが出す物質でスタンする住血吸虫のはなし
  2. 音声読み上げソフトで書類チェック
  3. 水中マクロラクタム化を加速する水溶性キャビタンド
  4. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ③
  5. 目指せ!フェロモンでリア充生活
  6. 僅か3時間でヒトのテロメア長を検出!
  7. ChemTile GameとSpectral Game
  8. 【著者に聞いてみた!】なぜ川中一輝はNH2基を有する超原子価ヨウ…

注目情報

ピックアップ記事

  1. 反芳香族化合物を積層させ三次元的な芳香族性を発現
  2. ベンジャミン・フランクリンメダル―受賞化学者一覧
  3. 保護基のお話
  4. 第157回―「メカノケミカル合成の方法論開発」Tomislav Friščić教授
  5. サリチル酸 (salicylic acid)
  6. アセトアルデヒドが香料に 食品添加物として指定了承
  7. 今年の光学活性化合物シンポジウム
  8. ストラディバリウスの音色の秘密は「ニス」にあらず
  9. 宇宙で結晶化!? 創薬研究を支援する結晶生成サービス「Kirara」
  10. 聖なる牛の尿から金を発見!(?)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP