[スポンサーリンク]

化学者のつぶやき

ゴールドエクスペリエンスが最長のラダーフェニレンを産み出す

[スポンサーリンク]

金表面における1,2,4,5-テトラブロモ-3,6-ジメチルベンゼン(TBDMB)の脱ハロゲン型[2+2]環化付加反応により、これまでで最長のラダー[n]フェニレン(L[n]P)が合成された。TBDMBの2つのメチル基による立体障害が本合成の鍵である。

ラダー[n]フェニレン(L[n]P)の合成

ラダー[n]フェニレン(L[n]P:nは縮環したベンゼン環数)はベンゼン環とシクロブタジエン環が、交互かつ梯子状に縮環した分子をさす(図1A)[1]

その芳香族性と反芳香族性の環が交互に縮環した特異な構造に起因する物性に興味がもたれ、L[n]Pの合成が研究されてきた[2]

これまでに報告されたL[n]Pのうち最長はL[5]Pであり、1987年にVollhardtらによりコバルト触媒を用いるアルキンの[2+2+2]環化付加反応を駆使して合成された(図1B)[3]。これより長いL[n]Pの合成は共役系の拡張に伴う溶解度の低下や不安定化が問題となるため、依然として挑戦的課題である。
今回、LiuとShi、Qiu、Liuらの共同研究により、金(111)表面でのTBDMBの脱ハロゲン型[2+2]環化付加反応を用いた、最長のL[n]P(n > 50)の合成が達成された(図1C)。長いL[n]P合成における溶解性と不安定性の問題は、真空チャンバー内の金(111)表面で合成することで回避された。加えて、TBDMBを用いて、メチル基の立体障害で[2+2+2]環化付加反応やジグザグ構造での重合などの副反応を抑制したことが本合成の鍵である。

さらに、得られたL[9]Pの分子軌道分布を測定し、DFT計算によるモデルと比較した。

図1. A. ラダー[n]フェニレンの構造B. L[5]Pの合成 C. 今回の合成法

“Ladder Phenylenes Synthesized on Au(111) Surface via Selective [2+2] Cycloaddition”
Li, D.-Y.; Qiu X.; Li, S.-W.; Ren, Y.-T.; Zhu, Y.-C.; Shu, C.-H.; Hou, X.-Y.; Liu, M.; Shi, X.-Q.; Qiu, X.; Liu, P.-N.
J. Am. Chem. Soc. 2021, 144, 12955–12960. DOI: 10.1021/jacs.1c05586

論文著者の紹介


研究者:Mengxi Liu 
研究者の経歴:
2010–2015                  Ph.D., Peking University, China (Prof. Liu, Z. and Prof. Zhang, Y.)
2015–2019 Assistant Researcher, National Center for Nanoscience and Technology, China
2019–                             Associate Researcher, National Center for Nanoscience and Technology, China
研究内容:新規炭素材料の設計および合成とその物性評価、分子・原子間相互作用測定法

研究者:Xing-Qiang Shi 
研究者の経歴:
2002–2007                  Ph.D., Chinese Academy of Sciences, China (Prof. Zeng, Z.)
2007–2012 Postdoc Researcher, City University of Hong Kong, Hong Kong (Prof. Van Hove, M. A.)
2012                               Postdoc, Hong Kong Baptist University, Hong Kong
2012–2020                  Assistant Professor, Southern University of Science and Technology, China
2020–                             Professor, College of Physics Science and Technology, Hebei University, China
研究内容:DFT計算と理論モデルに基づく表面・界面研究、分子スピンエレクトロニクス

研究者:Xiaohui Qiu
研究者の経歴:
1997–2000 Ph.D., Chinese Academy of Sciences, China (Prof. Bai, C.)
2000–2003                  Postdoc, University of California, Irvine, U.S.A. (Prof. Ho, W.)
2003–2005                  Visiting Scientist, IBM Thomas J. Watson Research Center, Yorktown Height, U.S.A.
2005–2006                  Visiting Scientist, Ohio State University, U.S.A.
2006–                             Professor, National Center for Nanoscience and Technology, China
研究内容:走査型プローブ顕微鏡法、ナノマテリアル/デバイスにおける電子輸送

研究者:Pei-Nian Liu 
研究者の経歴:
2001–2004                  Ph.D., Lanzhou University, China (Prof. Tu, Y.-Q.)
2004–2005 Research Associate, The Hong Kong University of Science and Technology, Hong Kong
2005–2007 Postdoc, Hong Kong Polytechnic University, Hong Kong (Prof. Lau, C.-P.)
2007–2008 Research Associate, The Hong Kong University of Science and Technology, Hong Kong
2008–2012 Associate Professor, East China University of Science and Technology, China
2012–                             Professor, East China University of Science and Technology, China
2014–2015                  Visiting Researcher, University of California, Irvine, U.S.A.
2015–                             Distinguished Professor, East China University of Science and Technology, China
研究内容:表面有機合成および触媒反応

論文の概要

金表面にTBDMBを吸着させ、433 Kに加熱して反応させると、直鎖構造の化合物が走査型電子顕微鏡(STM)で観測された(図2A-a)。直鎖化合物の周りは脱ハロゲン化により生じた臭素原子で取り囲まれている(図2A-b)。直鎖化合物のSTM像および非接触原子間力顕微鏡(nc-AFM)像は、L[n]Pのシミュレーション画像と一致したため、この化合物はL[n]Pであると同定された(図2A-c,d)。STM像上で、進行した反応を種類別に数え上げた結果、[2+2]環化付加反応が95%以上の選択率で進行したことがわかった。また、同像にて約20 nmの直鎖構造が観測された。これは、これまでで最長となるn > 50のL[n]Pに相当する。
続いて、今回初めて合成に成功した長いL[n]Pの物性解明を目指し、L[9]Pの分子軌道分布の実測とDFTによるシミュレーションを比較した。

金表面上では金の電子状態に強く影響されて、L[9]Pの電子構造は測定できなかった。そのためL[9]Pを絶縁体であるNaCl上に移動させて測定した。L[9]Pの中央部(図2B-a中のスポット1)の微分コンダクタンス(dI/dV)スペクトルにおいて、4つのピーク(O2, O1, U1, U2)が観測された(図2B-a)。dI/dVスペクトルはその測定地点の任意の電位での電流の流れやすさが測定できるので、その地点に存在する分子軌道の軌道エネルギー準位が検出できる。つまり、スポット1において4つの分子軌道が存在し、それぞれの軌道エネルギー準位が明らかとなった

次に、得られた軌道エネルギー準位に対応する電位でL[n]P上を走査しdI/dVを測定して、それぞれの分子軌道の分布を描画した(図2B-b, 左)。取得した分子軌道の分布図および電子の占有/非占有は、DFT計算に基づくL[9]Pの一電子酸化種の分子軌道分布と良い一致を示したため、L[9]PはNaCl上で一価のカチオン種として存在することがわかった(図2B-b, 右)。

また、実測のSOMOとSUMOのエネルギー差(1.15 eV)は、種々の近似により(詳細は論文を参照されたい)、計算値(1.11 eV)と一致した(図2C)。これらの結果から、理論計算は長いL[n]Pの電子構造を正確に再現できることが実証された。

図2. A. 合成したL[n]PのSTM像とnc-AFM像 a) 広範囲STM像 b) LPsの拡大STM像と長さの分布 c) 単一鎖のSTM像 d) 単一鎖のnc-AFM像 B. NaCl/Au(111)上のL[9]P+の電子状態 a) dI/dVスペクトル b) dI/dV像 (左: 実測、右: 計算結果) c) L[9]P+の分子軌道のエネルギー準位図 (図2は論文より転載)

以上、金(111)表面におけるTBDMBの脱ハロゲン型[2+2]環化付加反応により、これまでで最長のL[n]Pが合成された。また、合成されたL[9]PはSTM及びnc-AFMを用いてその構造と電子状態が確かめられた。今後、L[n]Pの未知なる性質が明らかにされ、化学の常識が変わるかもしれない。”ゴールドエクスペリエンス”はまだまだ新しいものを産み出すブルーオーシャンである。

用語説明

微分コンダクタンス(dI/dV)スペクトル/

・・・スペクトル: 任意の位置でのそれぞれの電位に対する電流の流れやすさの測定。その位置に分子軌道が存在すれば対応する電位でピークが現れる。横軸の電圧が負の場合は占有分子軌道、正の場合は非占有分子軌道の存在を意味する。なお、占有分子軌道のピークはO(Occupied)、非占有分子軌道のピークはU(Unoccupied)で区別した。

・・・像: 任意の電位でそれぞれの位置での電流の流れやすさのヒートマップ。その電位に対応する分子軌道の概形が描画できる。

参考文献

  1. Miljanić, O. Š.; Vollhardt, K. P. C. [N]Phenylenes: A Novel Class of Cyclohexatrienoid Hydrocarbon. In Carbon-Rich Compounds: From Molecules to Materials; Haley, M. M., Tykwinski, R. R., eds.; Wiley-VCH: Weinheim, 2006; pp 140–197.
  2. Toda, F.; Garratt, P. Four-Membered Ring Compounds Containing Bis(methylene)cyclobutene or Tetrakis(methylene)cyclobutane Moieties. Benzocyclobutadiene, Benzodicyclobutadiene, Biphenylene, and Related Compounds. Chem. Rev. 1992, 92, 1685–1707. DOI: 10.1021/cr00016a001
  3. Blanco, V. L.; Helson, H. E.; Hirthammer, M.; Mestdagh, H.; Vollhardt, K. P. C. 2,3,9,10-Tetrakis(trimethylsilyl)[5]phenylene. Synthesis via Regiospecific Cobalt-Catalyzed Cocyclization of 1,6-Bis(triisopropylsilyl)-1,3,5-hexatriyne. Angew. Chem., Int. Ed. 1987, 26, 1246–1247. DOI: 10.1002/anie.198712461

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. タイに講演にいってきました
  2. コンパクトで革新的な超純水製造システム「アリウム」
  3. sp3炭素のクロスカップリング反応の機構解明研究
  4. やっぱりリンが好き
  5. 100 ns以下の超高速でスピン反転を起こす純有機発光材料の設計…
  6. 原子一個の電気陰性度を測った! ―化学結合の本質に迫る―
  7. 特許の基礎知識(1)そもそも「特許」って何?
  8. 化学素人の化学読本

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 99.7%の精度で偽造ウイスキーを見抜ける「人工舌」が開発される
  2. 隣接基関与 Neighboring Group Participation
  3. 青いセレンディピティー
  4. AIが作った香水、ブラジルで発売
  5. ペプチドの革新的合成
  6. 信じられない!驚愕の天然物たち
  7. イオンの出入りを制御するキャップ付き分子容器の開発
  8. 光学分割 / optical resolution
  9. 有機合成化学協会誌2020年1月号:ドルテグラビルナトリウム・次亜塩素酸ナトリウム5水和物・面性不斉含窒素複素環カルベン配位子・光酸発生分子・海産天然物ageladine A
  10. 前田 和彦 Kazuhiko Maeda

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP