[スポンサーリンク]

化学者のつぶやき

アルキンメタセシスで誕生!HPB to γ-グラフィン!

[スポンサーリンク]

アルキンメタセシスを用いて広範囲に規則性をもったγグラフィンの合成が初めて達成された。2種類のモノマーを用いてアルキンメタセシスの平衡を制御したことが本合成の鍵である。

アルキンメタセシスによるγ-グラフィンの合成

グラフェンは、sp2炭素のハニカム構造からなる二次元シート状の炭素同素体であり、軽くて強靭かつ高い伝導性をもつ二次元マテリアルである。1987年Baughmanらにより、グラフェンとは異なる炭素同素体として、sp炭素とsp2炭素からなる炭素シートがグラフィンと命名された[1]。グラフィンは炭素の配置によってα-グラフィン、β-グラフィン、γ-グラフィンなどいくつかの種類がある(図1A)[2]。これらグラフィン類は、計算化学によりグラフェンと同様に軽量で引っ張りに強いと予測されている。一方で、グラフェンとは異なり、角度に依存した異方的な伝導度やバンドギャップが存在することが予測されており、次世代材料として期待されている[3, 4]

そのため、グラフィン類の合成はこれまでも試みられており、γ-グラフィンはメカノケミストリーやソノケミストリー(超音波を用いた合成)による合成が数例報告されている[5–7]。これらの報告ではベンゼンまたはヘキサブロモベンゼンと炭化カルシウムのカップリング反応を利用している(図1B)。しかし、これらのカップリング反応は不可逆反応であり、アモルファス状のγ-グラフィンが得られるという課題があった。そこで著者らは、アルキンメタセシスの可逆性を利用すれば、アモルファス化を防ぎ、結晶性のγ-グラフィンが合成できると考えた。

実際、著者らは2種のモノマー(HPB: ヘキサプロピニルベンゼン, HHEB: ヘキサキス[2-(4-ヘキシルフェニル)エチル]ベンゼン)を用いたアルキンメタセシスにより平衡を巧みに制御することで広範囲に規則性をもつγ-グラフィンの合成を達成した(図1C)。今回の合成により、γ-グラフィンの積層構造が初めて明らかになった。

図1. (A)グラフィン類の名称と構造 (B) これまでのγ-グラフィン合成 (C) アルキンメタセシスを用いたγ-グラフィン合成

 

Synthesis of γ-Graphyne Using Dynamic Covalent Chemistry

Hu, Y.; Wu, C.; Pan, Q.; Jin, Y.; Lyu, R.; Martinez, V.; Huang, S.; Wu, J.; Wayment, L. J.; Clark, N. A.; Raschke, M. B.; Zhao, Y.; Zhang, W. Nat. Synth. 2022.

DOI: 10.1038/s44160-022-00068-7

論文著者の紹介

研究者 : Wei Zhang (张 伟)

研究者の経歴:

1996–2000 B.S. Peking University, China
2001–2005 Ph.D. University of Illinois Urbana-Champaign, USA (Prof. Jeffrey S. Moore)
2006–2008 Postdoctoral Fellow, Massachusetts Institute of Technology, USA (Prof. Timothy M. Swager)
2008–2014 Assistant Professor, University of Colorado-Boulder, USA
2014–2018 Associate Professor, University of Colorado-Boulder, USA
2018– Professor and Associate Chair, University of Colorado-Boulder, USA

研究内容:動的共有結合化学による2次元および3次元分子の構築、自己修復材料

研究者 : Yingjie Zhao (赵 英杰)

研究者の経歴:

2001–2008 B.S. and M.S. Shandong Normal University, China
2008–2011 Ph.D. Chinese Academy of Sciences, China (Prof. Yuliang Li)
2011–2015 Postdoctoral Fellow, University of Geneva, Switzerland (Prof. Stefan Matile)
2015–2016 Postdoctoral Fellow, ETH Zürich, Switzerland (Prof. A. Dieter Schlüter)
2016– Professor, Qingdao University, China

研究内容:動的共有結合化学による2次元および3次元分子の構築、超分子化学

論文の概要

著者らはアルキンメタセシスを制御するため、重合を促進させるHPB(1)と解重合を促進させるHHEB(2)をモノマーとして選択した。HPB(1)は末端にメチル基をもちアルキンメタセシスにより2-ブチン(3)を副生する。副生した3を減圧により除去することで平衡がγ-グラフィン生成に偏り、重合を促進する。一方で、HHEB(2)から生じる副生成物45は減圧下でも揮発しにくいため、生じた45は再度アルキンメタセシスによって解重合をおこし、アルキンメタセシスで生じたエラーを修正する。さらに、2の末端アルキル鎖は重合途中のγ-グラフィンの溶解性を向上させ、アルキンメタセシスの進行を円滑にする。2を添加しない場合アモルファス化した生成物が得られ、逆に過剰に加えると3の減圧除去による重合の促進が不十分となり、短いオリゴマーしか得られない。条件検討の結果、モリブデン触媒存在下、混合比9:1の12から、収率72%でγ-グラフィンが得られた(図2A)。つまり、適度な2の添加(10%)により、アルキンメタセシスの平衡が制御できた。得られたγ-グラフィンは250 °Cでも構造が壊れることはなく、有機溶媒(ジクロロメタンやアセトンなど)や水、塩酸、水酸化ナトリウムに対しても安定であった。

次に、得られたγ-グラフィンの大きさと積層構造を調査した。光学顕微鏡観察からµm四方の薄膜が確認された(図2B)。原子間力顕微鏡(AFM)による解析の結果、約10 nmの段差が膜表面に見られた。これは約30層のグラフィンが重なっていることを表している(図2B)。二次元材料において、積層構造は膜内の構造と同等に材料の性質に大きく寄与するため興味がもたれる。合成したγ-グラフィンの積層構造の解明には、広角X線散乱(WAXS)を用いた。グラフィンの積層モデルとして3種類の積層構造(AA, AB, ABC積層)が考えられる。これらの積層モデルの回折角(2θ)の予測値と実測した回折角の比較により、γ-グラフィンはABC積層構造であることが明らかとなった(図2C)。

また、γ-グラフィンの電気特性についても調査を行った。サイクリックボルタンメトリーでバンドギャップを測定したところ、0.93 eVであった。これは、γ-グラフィンがバンド構造をもつ半導体であることを示している。一般的に共役系が長くなると、π電子の非局在化によりバンドギャップが小さくなる。メカノケミカル法で合成したγ-グラフィンのバンドギャップは2.7 eVであり、アルキンメタセシスで合成したγ-グラフィンと比較して約3倍大きな値である。つまり、合成したγ-グラフィンは既報で得られたものより共役系が長いと考えられるため、より大面積であると著者らは結論づけた。その他の解析については論文を参照されたい。

図2. (A) γ-グラフィンの合成 (B) γ-グラフィンの光学顕微鏡図およびAFM画像 (C) WAXSによる積層構造の決定 (図2B, Cは論文より転載)

 

以上、アルキンメタセシスを用いて広範囲に秩序構造をもつγ-グラフィンが合成された。本研究によって既報のγ-グラフィン合成では解明されていなかった積層構造を明らかにできた。またアルキンメタセシスを用いて二次元マテリアルを合成した初めての例であるため、本研究を基盤としてまだ合成が達成されていないグラフィンファミリーが合成される日も遠くないだろう。

 

参考文献

  1. Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure‐property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. J. Chem. Phys. 1987, 87, 6687–6699. DOI: 1063/1.453405
  2. He, T.; Kong, Y.; Puente Santiago, A. R.; Ahsan, M. A.; Pan, H.; Du, A. Graphynes as Emerging 2D-Platforms for Electronic and Energy Applications: A Computational Perspective. Mater. Chem. Front. 2021, 5, 6392–6412. DOI: 1039/D1QM00595B
  3. Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 2012, 108, 086804. DOI: 10.1103/PhysRevLett.108.086804
  4. Kang, J.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B. Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet. J. Phys. Chem. C 2011, 115, 20466–20470. DOI: 1021/jp206751m
  5. Li, Q.; Li, Y.; Chen, Y.; Wu, L.; Yang, C.; Cui, X. Synthesis of γ-Graphyne by Mechanochemistry and Its Electronic Structure. Carbon 2018, 136, 248–254. DOI: 1016/j.carbon.2018.04.081
  6. Li, Q.; Yang, C.; Wu, L.; Wang, H.; Cui, X. Converting Benzene into γ-Graphyne and Its Enhanced Electrochemical Oxygen Evolution Performance. J. Mater. Chem. A 2019, 7, 5981–5990. DOI: 10.1039/C8TA10317H
  7. Ding, W.; Sun, M.; Zhang, Z.; Lin, X.; Gao, B. Ultrasound-Promoted Synthesis of γ-Graphyne for Supercapacitor and Photoelectrochemical Applications. Ultrasonics Sonochemistry 2020, 61, 104850. DOI: 1016/j.ultsonch.2019.104850

 

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 人工DNAを複製可能な生物ができた!
  2. 腎細胞がん治療の新薬ベルツチファン製造プロセスの開発
  3. ホウ素と窒素固定のおはなし
  4. 【Spiber】新卒・中途採用情報
  5. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は…
  6. 金ナノクラスター表面の自己組織化単分子膜を利用したテトラセンの高…
  7. 有機色素の自己集合を利用したナノ粒子の配列
  8. 電池材料粒子内部の高精細な可視化に成功~測定とデータ科学の連携~…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 還元された酸化グラフェン(その1)
  2. スワーン酸化 Swern Oxidation
  3. 吉良 満夫 Mitsuo Kira
  4. 有望な若手研究者を発掘ー研究者探索サービス「JDream Expert Finder」
  5. 不安定化合物ヒドロシランをうまくつくる方法
  6. 君には電子のワルツが見えるかな
  7. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  8. 初めてTOEICを受験してみた~学部生の挑戦記録~
  9. カール・フィッシャー滴定~滴定による含水率測定~
  10. 二酸化炭素 (carbon dioxide)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用

開催日:2024/07/17 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

そうだ、アルミニウムを丸裸にしてみようじゃないか

N-ヘテロ環ボリロキシ配位子を用いることで、アニオン性かつ非環式、さらには“裸“という極めて不安定な…

カルベンがアシストする芳香環の開環反応

カルベンがアシストする芳香環の開環反応が報告された。カルベンとアジドによる環形成でナイトレンインダゾ…

有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・C–O結合ホモリシス・ハロカルビン・触媒的バイオマス分解

有機合成化学協会が発行する有機合成化学協会誌、2024年7月号がオンライン公開されています。…

分子研「第139回分子科学フォーラム」に参加してみた

bergです。この度は2024年7月3日(水)にオンラインにて開催された、自然科学研究機構 分子科学…

光の色で反応性が変わる”波長選択的”な有機光触媒

照射する可視光の波長によって異なる反応性を示す、新規可視光レドックス触媒反応が開発された。赤色光照射…

ロタキサンを用いた機械的刺激に応答する効率的な分子放出

軸状分子に複数の積み荷分子をもつロタキサンを用いることで効率的に分子を放出するシステムが報告された。…

鉄触媒反応へのお誘い ~クロスカップリング反応を中心に~

はじめにパラジウムなどのレアメタルを触媒としたカップリング反応は、有機EL材料、医農薬、半導体材…

Sim2Realマテリアルズインフォマティクス:データの乏しさを分子シミュレーションにより克服する

開催日:2024/07/10 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

ある動脈硬化の現象とマイクロ・ナノプラスチックのはなし

Tshozoです。マイクロプラスチックについては以前から関連記事(1,2)を書いたり定期的に…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP