[スポンサーリンク]

化学者のつぶやき

アルキンメタセシスで誕生!HPB to γ-グラフィン!

[スポンサーリンク]

本論文に関して不正が発覚し、取り下げとなりましたのでご注意ください(2024年9月追記)。

アルキンメタセシスを用いて広範囲に規則性をもったγグラフィンの合成が初めて達成された。2種類のモノマーを用いてアルキンメタセシスの平衡を制御したことが本合成の鍵である。

アルキンメタセシスによるγ-グラフィンの合成

グラフェンは、sp2炭素のハニカム構造からなる二次元シート状の炭素同素体であり、軽くて強靭かつ高い伝導性をもつ二次元マテリアルである。1987年Baughmanらにより、グラフェンとは異なる炭素同素体として、sp炭素とsp2炭素からなる炭素シートがグラフィンと命名された[1]。グラフィンは炭素の配置によってα-グラフィン、β-グラフィン、γ-グラフィンなどいくつかの種類がある(図1A)[2]。これらグラフィン類は、計算化学によりグラフェンと同様に軽量で引っ張りに強いと予測されている。一方で、グラフェンとは異なり、角度に依存した異方的な伝導度やバンドギャップが存在することが予測されており、次世代材料として期待されている[3, 4]

そのため、グラフィン類の合成はこれまでも試みられており、γ-グラフィンはメカノケミストリーやソノケミストリー(超音波を用いた合成)による合成が数例報告されている[5–7]。これらの報告ではベンゼンまたはヘキサブロモベンゼンと炭化カルシウムのカップリング反応を利用している(図1B)。しかし、これらのカップリング反応は不可逆反応であり、アモルファス状のγ-グラフィンが得られるという課題があった。そこで著者らは、アルキンメタセシスの可逆性を利用すれば、アモルファス化を防ぎ、結晶性のγ-グラフィンが合成できると考えた。

実際、著者らは2種のモノマー(HPB: ヘキサプロピニルベンゼン, HHEB: ヘキサキス[2-(4-ヘキシルフェニル)エチル]ベンゼン)を用いたアルキンメタセシスにより平衡を巧みに制御することで広範囲に規則性をもつγ-グラフィンの合成を達成した(図1C)。今回の合成により、γ-グラフィンの積層構造が初めて明らかになった。

図1. (A)グラフィン類の名称と構造 (B) これまでのγ-グラフィン合成 (C) アルキンメタセシスを用いたγ-グラフィン合成

 

Synthesis of γ-Graphyne Using Dynamic Covalent Chemistry

Hu, Y.; Wu, C.; Pan, Q.; Jin, Y.; Lyu, R.; Martinez, V.; Huang, S.; Wu, J.; Wayment, L. J.; Clark, N. A.; Raschke, M. B.; Zhao, Y.; Zhang, W. Nat. Synth. 2022.

DOI: 10.1038/s44160-022-00068-7

論文著者の紹介

研究者 : Wei Zhang (张 伟)

研究者の経歴:

1996–2000 B.S. Peking University, China
2001–2005 Ph.D. University of Illinois Urbana-Champaign, USA (Prof. Jeffrey S. Moore)
2006–2008 Postdoctoral Fellow, Massachusetts Institute of Technology, USA (Prof. Timothy M. Swager)
2008–2014 Assistant Professor, University of Colorado-Boulder, USA
2014–2018 Associate Professor, University of Colorado-Boulder, USA
2018– Professor and Associate Chair, University of Colorado-Boulder, USA

研究内容:動的共有結合化学による2次元および3次元分子の構築、自己修復材料

研究者 : Yingjie Zhao (赵 英杰)

研究者の経歴:

2001–2008 B.S. and M.S. Shandong Normal University, China
2008–2011 Ph.D. Chinese Academy of Sciences, China (Prof. Yuliang Li)
2011–2015 Postdoctoral Fellow, University of Geneva, Switzerland (Prof. Stefan Matile)
2015–2016 Postdoctoral Fellow, ETH Zürich, Switzerland (Prof. A. Dieter Schlüter)
2016– Professor, Qingdao University, China

研究内容:動的共有結合化学による2次元および3次元分子の構築、超分子化学

論文の概要

著者らはアルキンメタセシスを制御するため、重合を促進させるHPB(1)と解重合を促進させるHHEB(2)をモノマーとして選択した。HPB(1)は末端にメチル基をもちアルキンメタセシスにより2-ブチン(3)を副生する。副生した3を減圧により除去することで平衡がγ-グラフィン生成に偏り、重合を促進する。一方で、HHEB(2)から生じる副生成物45は減圧下でも揮発しにくいため、生じた45は再度アルキンメタセシスによって解重合をおこし、アルキンメタセシスで生じたエラーを修正する。さらに、2の末端アルキル鎖は重合途中のγ-グラフィンの溶解性を向上させ、アルキンメタセシスの進行を円滑にする。2を添加しない場合アモルファス化した生成物が得られ、逆に過剰に加えると3の減圧除去による重合の促進が不十分となり、短いオリゴマーしか得られない。条件検討の結果、モリブデン触媒存在下、混合比9:1の12から、収率72%でγ-グラフィンが得られた(図2A)。つまり、適度な2の添加(10%)により、アルキンメタセシスの平衡が制御できた。得られたγ-グラフィンは250 °Cでも構造が壊れることはなく、有機溶媒(ジクロロメタンやアセトンなど)や水、塩酸、水酸化ナトリウムに対しても安定であった。

次に、得られたγ-グラフィンの大きさと積層構造を調査した。光学顕微鏡観察からµm四方の薄膜が確認された(図2B)。原子間力顕微鏡(AFM)による解析の結果、約10 nmの段差が膜表面に見られた。これは約30層のグラフィンが重なっていることを表している(図2B)。二次元材料において、積層構造は膜内の構造と同等に材料の性質に大きく寄与するため興味がもたれる。合成したγ-グラフィンの積層構造の解明には、広角X線散乱(WAXS)を用いた。グラフィンの積層モデルとして3種類の積層構造(AA, AB, ABC積層)が考えられる。これらの積層モデルの回折角(2θ)の予測値と実測した回折角の比較により、γ-グラフィンはABC積層構造であることが明らかとなった(図2C)。

また、γ-グラフィンの電気特性についても調査を行った。サイクリックボルタンメトリーでバンドギャップを測定したところ、0.93 eVであった。これは、γ-グラフィンがバンド構造をもつ半導体であることを示している。一般的に共役系が長くなると、π電子の非局在化によりバンドギャップが小さくなる。メカノケミカル法で合成したγ-グラフィンのバンドギャップは2.7 eVであり、アルキンメタセシスで合成したγ-グラフィンと比較して約3倍大きな値である。つまり、合成したγ-グラフィンは既報で得られたものより共役系が長いと考えられるため、より大面積であると著者らは結論づけた。その他の解析については論文を参照されたい。

図2. (A) γ-グラフィンの合成 (B) γ-グラフィンの光学顕微鏡図およびAFM画像 (C) WAXSによる積層構造の決定 (図2B, Cは論文より転載)

 

以上、アルキンメタセシスを用いて広範囲に秩序構造をもつγ-グラフィンが合成された。本研究によって既報のγ-グラフィン合成では解明されていなかった積層構造を明らかにできた。またアルキンメタセシスを用いて二次元マテリアルを合成した初めての例であるため、本研究を基盤としてまだ合成が達成されていないグラフィンファミリーが合成される日も遠くないだろう。

 

参考文献

  1. Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure‐property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. J. Chem. Phys. 1987, 87, 6687–6699. DOI: 1063/1.453405
  2. He, T.; Kong, Y.; Puente Santiago, A. R.; Ahsan, M. A.; Pan, H.; Du, A. Graphynes as Emerging 2D-Platforms for Electronic and Energy Applications: A Computational Perspective. Mater. Chem. Front. 2021, 5, 6392–6412. DOI: 1039/D1QM00595B
  3. Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 2012, 108, 086804. DOI: 10.1103/PhysRevLett.108.086804
  4. Kang, J.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B. Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet. J. Phys. Chem. C 2011, 115, 20466–20470. DOI: 1021/jp206751m
  5. Li, Q.; Li, Y.; Chen, Y.; Wu, L.; Yang, C.; Cui, X. Synthesis of γ-Graphyne by Mechanochemistry and Its Electronic Structure. Carbon 2018, 136, 248–254. DOI: 1016/j.carbon.2018.04.081
  6. Li, Q.; Yang, C.; Wu, L.; Wang, H.; Cui, X. Converting Benzene into γ-Graphyne and Its Enhanced Electrochemical Oxygen Evolution Performance. J. Mater. Chem. A 2019, 7, 5981–5990. DOI: 10.1039/C8TA10317H
  7. Ding, W.; Sun, M.; Zhang, Z.; Lin, X.; Gao, B. Ultrasound-Promoted Synthesis of γ-Graphyne for Supercapacitor and Photoelectrochemical Applications. Ultrasonics Sonochemistry 2020, 61, 104850. DOI: 1016/j.ultsonch.2019.104850

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化
  2. MEDCHEM NEWSと提携しました
  3. ホウ素の力で空気が酸化に参加!?
  4. 研究費総額100万円!2050年のミライをつくる若手研究者を募集…
  5. 2017年の注目分子はどれ?
  6. ケムステVシンポ「最先端有機化学」開催報告(前編)
  7. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするト…
  8. 学振申請書を磨き上げるポイント ~自己評価欄 編(前編)~

注目情報

ピックアップ記事

  1. ADEKAの新CMに生田絵梨花さんが登場
  2. 1,3-双極子付加環化反応 1,3-Dipolar Cycloaddition
  3. 機構解明が次なる一手に繋がった反応開発研究
  4. Cyclopropanes in Organic Synthesis
  5. レザ・ガディリ M. Reza Ghadiri
  6. 群ってなに?【化学者だって数学するっつーの!】
  7. 首席随員に野依良治氏 5月の両陛下欧州訪問
  8. ライセルト インドール合成 Reissert Indole Synthesis
  9. Inpriaとは? ~フォトレジスト業界の重要トピック~
  10. 研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝研究会

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP