[スポンサーリンク]

化学者のつぶやき

アルキンメタセシスで誕生!HPB to γ-グラフィン!

[スポンサーリンク]

アルキンメタセシスを用いて広範囲に規則性をもったγグラフィンの合成が初めて達成された。2種類のモノマーを用いてアルキンメタセシスの平衡を制御したことが本合成の鍵である。

アルキンメタセシスによるγ-グラフィンの合成

グラフェンは、sp2炭素のハニカム構造からなる二次元シート状の炭素同素体であり、軽くて強靭かつ高い伝導性をもつ二次元マテリアルである。1987年Baughmanらにより、グラフェンとは異なる炭素同素体として、sp炭素とsp2炭素からなる炭素シートがグラフィンと命名された[1]。グラフィンは炭素の配置によってα-グラフィン、β-グラフィン、γ-グラフィンなどいくつかの種類がある(図1A)[2]。これらグラフィン類は、計算化学によりグラフェンと同様に軽量で引っ張りに強いと予測されている。一方で、グラフェンとは異なり、角度に依存した異方的な伝導度やバンドギャップが存在することが予測されており、次世代材料として期待されている[3, 4]

そのため、グラフィン類の合成はこれまでも試みられており、γ-グラフィンはメカノケミストリーやソノケミストリー(超音波を用いた合成)による合成が数例報告されている[5–7]。これらの報告ではベンゼンまたはヘキサブロモベンゼンと炭化カルシウムのカップリング反応を利用している(図1B)。しかし、これらのカップリング反応は不可逆反応であり、アモルファス状のγ-グラフィンが得られるという課題があった。そこで著者らは、アルキンメタセシスの可逆性を利用すれば、アモルファス化を防ぎ、結晶性のγ-グラフィンが合成できると考えた。

実際、著者らは2種のモノマー(HPB: ヘキサプロピニルベンゼン, HHEB: ヘキサキス[2-(4-ヘキシルフェニル)エチル]ベンゼン)を用いたアルキンメタセシスにより平衡を巧みに制御することで広範囲に規則性をもつγ-グラフィンの合成を達成した(図1C)。今回の合成により、γ-グラフィンの積層構造が初めて明らかになった。

図1. (A)グラフィン類の名称と構造 (B) これまでのγ-グラフィン合成 (C) アルキンメタセシスを用いたγ-グラフィン合成

 

Synthesis of γ-Graphyne Using Dynamic Covalent Chemistry

Hu, Y.; Wu, C.; Pan, Q.; Jin, Y.; Lyu, R.; Martinez, V.; Huang, S.; Wu, J.; Wayment, L. J.; Clark, N. A.; Raschke, M. B.; Zhao, Y.; Zhang, W. Nat. Synth. 2022.

DOI: 10.1038/s44160-022-00068-7

論文著者の紹介

研究者 : Wei Zhang (张 伟)

研究者の経歴:

1996–2000 B.S. Peking University, China
2001–2005 Ph.D. University of Illinois Urbana-Champaign, USA (Prof. Jeffrey S. Moore)
2006–2008 Postdoctoral Fellow, Massachusetts Institute of Technology, USA (Prof. Timothy M. Swager)
2008–2014 Assistant Professor, University of Colorado-Boulder, USA
2014–2018 Associate Professor, University of Colorado-Boulder, USA
2018– Professor and Associate Chair, University of Colorado-Boulder, USA

研究内容:動的共有結合化学による2次元および3次元分子の構築、自己修復材料

研究者 : Yingjie Zhao (赵 英杰)

研究者の経歴:

2001–2008 B.S. and M.S. Shandong Normal University, China
2008–2011 Ph.D. Chinese Academy of Sciences, China (Prof. Yuliang Li)
2011–2015 Postdoctoral Fellow, University of Geneva, Switzerland (Prof. Stefan Matile)
2015–2016 Postdoctoral Fellow, ETH Zürich, Switzerland (Prof. A. Dieter Schlüter)
2016– Professor, Qingdao University, China

研究内容:動的共有結合化学による2次元および3次元分子の構築、超分子化学

論文の概要

著者らはアルキンメタセシスを制御するため、重合を促進させるHPB(1)と解重合を促進させるHHEB(2)をモノマーとして選択した。HPB(1)は末端にメチル基をもちアルキンメタセシスにより2-ブチン(3)を副生する。副生した3を減圧により除去することで平衡がγ-グラフィン生成に偏り、重合を促進する。一方で、HHEB(2)から生じる副生成物45は減圧下でも揮発しにくいため、生じた45は再度アルキンメタセシスによって解重合をおこし、アルキンメタセシスで生じたエラーを修正する。さらに、2の末端アルキル鎖は重合途中のγ-グラフィンの溶解性を向上させ、アルキンメタセシスの進行を円滑にする。2を添加しない場合アモルファス化した生成物が得られ、逆に過剰に加えると3の減圧除去による重合の促進が不十分となり、短いオリゴマーしか得られない。条件検討の結果、モリブデン触媒存在下、混合比9:1の12から、収率72%でγ-グラフィンが得られた(図2A)。つまり、適度な2の添加(10%)により、アルキンメタセシスの平衡が制御できた。得られたγ-グラフィンは250 °Cでも構造が壊れることはなく、有機溶媒(ジクロロメタンやアセトンなど)や水、塩酸、水酸化ナトリウムに対しても安定であった。

次に、得られたγ-グラフィンの大きさと積層構造を調査した。光学顕微鏡観察からµm四方の薄膜が確認された(図2B)。原子間力顕微鏡(AFM)による解析の結果、約10 nmの段差が膜表面に見られた。これは約30層のグラフィンが重なっていることを表している(図2B)。二次元材料において、積層構造は膜内の構造と同等に材料の性質に大きく寄与するため興味がもたれる。合成したγ-グラフィンの積層構造の解明には、広角X線散乱(WAXS)を用いた。グラフィンの積層モデルとして3種類の積層構造(AA, AB, ABC積層)が考えられる。これらの積層モデルの回折角(2θ)の予測値と実測した回折角の比較により、γ-グラフィンはABC積層構造であることが明らかとなった(図2C)。

また、γ-グラフィンの電気特性についても調査を行った。サイクリックボルタンメトリーでバンドギャップを測定したところ、0.93 eVであった。これは、γ-グラフィンがバンド構造をもつ半導体であることを示している。一般的に共役系が長くなると、π電子の非局在化によりバンドギャップが小さくなる。メカノケミカル法で合成したγ-グラフィンのバンドギャップは2.7 eVであり、アルキンメタセシスで合成したγ-グラフィンと比較して約3倍大きな値である。つまり、合成したγ-グラフィンは既報で得られたものより共役系が長いと考えられるため、より大面積であると著者らは結論づけた。その他の解析については論文を参照されたい。

図2. (A) γ-グラフィンの合成 (B) γ-グラフィンの光学顕微鏡図およびAFM画像 (C) WAXSによる積層構造の決定 (図2B, Cは論文より転載)

 

以上、アルキンメタセシスを用いて広範囲に秩序構造をもつγ-グラフィンが合成された。本研究によって既報のγ-グラフィン合成では解明されていなかった積層構造を明らかにできた。またアルキンメタセシスを用いて二次元マテリアルを合成した初めての例であるため、本研究を基盤としてまだ合成が達成されていないグラフィンファミリーが合成される日も遠くないだろう。

 

参考文献

  1. Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure‐property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. J. Chem. Phys. 1987, 87, 6687–6699. DOI: 1063/1.453405
  2. He, T.; Kong, Y.; Puente Santiago, A. R.; Ahsan, M. A.; Pan, H.; Du, A. Graphynes as Emerging 2D-Platforms for Electronic and Energy Applications: A Computational Perspective. Mater. Chem. Front. 2021, 5, 6392–6412. DOI: 1039/D1QM00595B
  3. Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 2012, 108, 086804. DOI: 10.1103/PhysRevLett.108.086804
  4. Kang, J.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B. Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet. J. Phys. Chem. C 2011, 115, 20466–20470. DOI: 1021/jp206751m
  5. Li, Q.; Li, Y.; Chen, Y.; Wu, L.; Yang, C.; Cui, X. Synthesis of γ-Graphyne by Mechanochemistry and Its Electronic Structure. Carbon 2018, 136, 248–254. DOI: 1016/j.carbon.2018.04.081
  6. Li, Q.; Yang, C.; Wu, L.; Wang, H.; Cui, X. Converting Benzene into γ-Graphyne and Its Enhanced Electrochemical Oxygen Evolution Performance. J. Mater. Chem. A 2019, 7, 5981–5990. DOI: 10.1039/C8TA10317H
  7. Ding, W.; Sun, M.; Zhang, Z.; Lin, X.; Gao, B. Ultrasound-Promoted Synthesis of γ-Graphyne for Supercapacitor and Photoelectrochemical Applications. Ultrasonics Sonochemistry 2020, 61, 104850. DOI: 1016/j.ultsonch.2019.104850

 

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ケミストリー四方山話-Part I
  2. シス型 ゲラニルゲラニル二リン酸?
  3. 化学者も参戦!?急成長ワクチン業界
  4. ヒドリド転位型C(sp3)-H結合官能基化を駆使する炭素中員環合…
  5. 有機反応を俯瞰する ーリンの化学 その 1 (Wittig 型シ…
  6. ChemDrawの使い方【作図編⑤ : 反応機構 (後編)】
  7. ケージ内で反応を進行させる超分子不斉触媒
  8. 分子の聖杯カリックスアレーンが生命へとつながる

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 劣性遺伝子押さえ込む メンデルの法則仕組み解明
  2. 吉野彰氏がリチウムイオン電池技術の発明・改良で欧州発明家賞にノミネート
  3. 第63回野依フォーラム例会「データ駆動型化学が拓く新たな世界」特別配信
  4. 化学実験系YouTuber
  5. 2014年化学10大ニュース
  6. 核酸塩基は4つだけではない
  7. 化学系必見!お土産・グッズ・アイテム特集
  8. 求核的フルオロアルキル化 Nucleophilic Fluoroalkylation
  9. エーザイ、アルツハイマー治療薬でスウェーデン企業と提携
  10. リチウム二次電池における次世代電極材料の開発【終了】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

尿酸 Uric Acid 〜痛風リスクと抗酸化作用のジレンマ〜

皆さん、尿酸値は気にしてますか? ご存知の通り、ビールやお肉に豊富に含まれるプリ…

第173回―「新たな蛍光色素が実現する生細胞イメージングと治療法」Marina Kuimova准教授

第173回の海外化学者インタビューは、マリナ・クイモヴァ准教授です。インペリアル・カレッジ・ロンドン…

Biotage Selekt のバリュープライス版 Enkel を試してみた

Biotage の新型自動フラッシュクロマトシステム Selekt のバリュープライ…

【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チタン、ジルコニウムが使用されている世界は?-オルガチックスの用途例紹介-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

超分子ランダム共重合を利用して、二つの”かたち”が調和されたような超分子コポリマーを造り、さらに光反応を利用して別々の”かたち”に分ける

第407回のスポットライトリサーチは、千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コー…

セレンディピティ:思いがけない発見・発明のドラマ

hodaです。今回は1993年に刊行され、2022年7月に文庫化された書籍について書いていき…

第29回 ケムステVシンポ「論文を書こう!そして…」を開催します

コロナ禍による規制も少しずつ緩和されてきて、逆にオンライン会議が逆に少し恋しくなっている今日この頃か…

マテリアルズ・インフォマティクス活用検討・テーマ発掘の進め方 -社内促進でつまずやすいポイントや解決策を解説-

開催日:2022/08/24 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

高分子固体電解質をAIで自動設計

第406回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山…

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP