[スポンサーリンク]

A

アルキンメタセシス Alkyne Metathesis

[スポンサーリンク]

概要

アルケンメタセシスではアルキリデン錯体を触媒・アルケンを基質として用いるが、アルキリジン錯体を触媒・アルキンを基質として用いる場合には、アルキンメタセシス(alkyne metathesis)が進行する。アルキン間の置換基に交換が起きる。

生成物の内部アルキンを部分還元することにより、アルケンメタセシスでは難しいアルケンの幾何異性制御が完全に行えるというメリットがある。

単一の生成物を与える閉環アルキンメタセシス(RCAM)が合成化学的には有用であるが、分子間クロスメタセシスも進行する。

基本文献

  •  Pennella, F.; Banks R. L.; Bailey, G. C.  Chem. Commun. 1968, 1548. DOI: 10.1039/C19680001548
  •  Mortreux, A.; Blanchard, M. JCS Chem. Commun. 1974, 786. doi:10.1039/C39740000786
  • Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932. doi:10.1021/ja00403a058
  • Fürstner, A.; Seidel, G. Angew. Chem. Int. Ed. 1998, 37, 1734. [abstract]
  • Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. doi:10.1021/ja992074k
<review>

開発の歴史

1968年にBailleyらは酸化タングステン/シリカゲル触媒の存在下、2つの異なるジアリールアルキンのアリール基が置き換わる反応を報告した。しかし、この反応は200℃〜450℃と高温を必要としていた。

1974年にフランスの化学者Mortreuxらによって本反応にMo(CO)6-フェノール触媒系が有効であることが示され、160℃、3hで反応が進行する均一系触媒がはじめて報告された。しかしやはり高温反応と官能基許容性の面で不足があった。

その後、有機金属化学分野の発展が後押しする形で炭素―金属三重結合を備える高原子価遷移金属アルキリジン錯体(Schrock alkylidine)の研究が進み、機構面からの基盤構築が進んだ。1981年には、タングステン-アルキリジン錯体が初の構造明確なアルキンメタセシス触媒として働くことがSchrockらによって示された。後にπドナー性の低いフルオロアルコールを配位子として備えるモリブデン-アルキリジン錯体、レニウム-アルキリジン錯体もメタセシス触媒となり得ることが示された。

 

反応機構

可逆的な[2+2]付加環化から生じるsquare-pyramidalなメタラシクロブタジエンを経由する機構にて進行する。

反応例

アルケンメタセシスでアルケンを合成するとE/Z混合物が生じてしまう。アルキンメタセシス→部分還元のプロトコルに変更することでこの点を解決出来る[1, 2]。

ニトリル-アルキン間のクロスメタセシス反応[3]

天然物全合成への応用

Fürstnerらによって、合成手法としての研究が精力的に行われている。

Epothilone Cの合成[4] :タングステン触媒はルイス塩基性官能基に弱い一方で、モリブデンアミド錯体とCH2Cl2から系中生成する触媒活性種[5]はこの課題をクリアしている。

NakadomarinAの全合成[6]:脂肪族アルコールよりもπドナー性の低いシラノールをリガンドとしたMo-phen錯体は、bench-stableな触媒前駆体である。ZnCl2もしくはMnCl2共存下に活性種を系中生成させ、極めて官能基許容性に優れたアルキンメタセシス反応を進行させる[7]。

Sinulariadiolideの合成[8]:基質にアルコールが存在すると、シラノール配位子と交換してしまい触媒が失活する。これを防ぐためにトリシラノール型配位子を備えたCanopy型メタセシス触媒[9]が設計され、用いられている。

参考文献

  1. (a) Fürstner, A.; Seidel, G. Angew. Chem. Int. Ed. 1998, 37, 1734. [abstract] (b) Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. doi:10.1021/ja992074k
  2. (a) Radkowski, K.; Sundararaju, B.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 355. doi:10.1002/anie.201205946 (b) Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 18, 2182. doi:10.1039/B207169J
  3. Geyer, A. M.; Gdula, R. L.; Wiedner, E. S.; Johnson, M. J. A. J. Am. Chem. Soc. 2007, 129. 3800. doi:10.1021/ja0693439
  4. Fürstner, A.; Mathes, C.; Lehman, C. W. Chem. Eur. J. 2001, 7, 5299. [abstract]
  5. Fürstner, A.; Mathes, C. Org. Lett. 2001, 3, 221. doi:10.1021/ol0068795
  6. Boeckman, R. K.; Wang, H.; Rugg, K. W.; Genung, N. E.; Chen, K.; Ryder, T. R. Org. Lett. 2016, 18, 6136. doi:10.1021/acs.orglett.6b03137
  7. (a) Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A. J. Am. Chem. Soc. 2010, 132, 11045. doi:10.1021/ja104800w (b) Heppekausen, J.; Stade, R.; Kondoh, A.; Seidel, G.; Goddard, R.; Fürstner, A. Chem. Eur. J. 2012, 18, 10281. doi:10.1002/chem.201200621 (c) Persich, P.; Llaveria, J.; Lhermet, R.; de Haro, T.; Stade, R.;Kondoh, A.; Fürstner, A. Chem. Eur. J. 2013, 19, 13047. doi:10.1002/chem.201302320 (d) Thompson, R. R.; Rotella, M. E.; Du, P.; Zhou, X.; Fronczek, F. R.; Kumar, R.; Gutierrez, O.; Lee, S. Organometallics 2019, 38, 4054. doi:10.1021/acs.organomet.9b00430 (e) Thompson, R. R.; Rotella, M. E.; Zhou, X.; Fronczek, F. R.; Gutierrez, O.; Lee, S. J. Am. Chem. Soc. 2021, 143, 9026. doi:10.1021/jacs.1c01843
  8. Meng, Z.; Fürstner, A.  J. Am. Chem. Soc. 2019, 141, 805. doi:10.1021/jacs.8b12185
  9. (a) Hillenbrand, J.; Leutzsch, M.; Fürstner, A. Angew. Chem. Int. Ed. 2019, 58, 15690. doi:10.1002/anie.201908571 (b) Hillenbrand, J.; Leutzsch, M.; Yiannakas, E.; Gordon, C. P.; Wille, C.; Nöthling, N.; Copéret, C.; Fürstner, A. J. Am. Chem. Soc. 2020, 142, 11279. doi:10.1021/jacs.0c04742 (c) Haack, A.; Hillenbrand, J.; Leutzsch, M.; van Gastel, M.; Neese,F.; Fürstner, A. J. Am. Chem. Soc. 2021, 143, 5643. doi:10.1021/jacs.1c01404

関連反応

関連書籍

Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (English Edition)

Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (English Edition)

¥23,711(as of 06/03 11:27)
Release date: 2014/10/08
Amazon product information

関連試薬

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. スズアセタールを用いる選択的変換 Selective Trans…
  2. シリル系保護基 Silyl Protective Group
  3. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Gan…
  4. ウーリンス試薬 Woollins’ Reagent
  5. 不斉アリルホウ素化 Asymmetric Allylborati…
  6. モンサント酢酸合成プロセス Monsanto Process f…
  7. 金属カルベノイドのC-H挿入反応 C-H Insertion o…
  8. セイファース・ギルバート アルキン合成 Seyferth-Gil…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾
  2. アルゴン (argon; Ar)
  3. 光学分割 / optical resolution
  4. 「副会長辞任する」国際組織に伝える…早大・松本教授
  5. 聖なる牛の尿から金を発見!(?)
  6. 環境対策と経済性を両立する電解酸化反応、創造化学が実用化実験
  7. スイスの博士課程ってどうなの?3〜面接と入学手続き〜
  8. ゲルハルト・エルトゥル Gerhard Ertl
  9. 第12回 金属錯体から始まる化学ー伊藤肇教授
  10. 結晶構造と色の変化、有機光デバイス開発の強力ツール

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

材料開発を効率化する、マテリアルズ・インフォマティクス人材活用のポイントと進め方

開催日:2023/06/07 申し込みはこちら■開催概要近年、少子高齢化…

材料開発の変革をリードするスタートアップのデータサイエンティストとは?

開催日:2023/06/08  申し込みはこちら■開催概要MI-6はこの度シリーズAラウ…

世界で初めて有機半導体の”伝導帯バンド構造”の測定に成功!

第523回のスポットライトリサーチは、千葉大学 吉田研究室で博士課程を修了された佐藤 晴輝(さとう …

第3回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、7月21日(金)に第3…

第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野のAltac」を開催します!

本格的な夏はまだまだ先ですが、毎日かなり暖かくなってきました。皆様お変わりございませんでしょうか。…

フラノクマリン -グレープフルーツジュースと薬の飲み合わせ-

2023年2月に実施された第108回薬剤師国家試験において、スウィーティーという単語…

構造の多様性で変幻自在な色調変化を示す分子を開発!

第522回のスポットライトリサーチは、北海道大学 有機化学第一研究室(鈴木孝紀 研究室)で博士課程を…

マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?

開催日:2023/05/31 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功

第521回のスポットライトリサーチは、名古屋大学大学院理学研究科理学専攻 物質・生命化学領域 有機化…

材料開発の変革をリードするスタートアップのプロダクト開発ポジションとは?

開催日:2023/06/01 申し込みはこちら■開催概要MI-6はこの度シリーズAラウン…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP