[スポンサーリンク]

A

アルキンメタセシス Alkyne Metathesis

[スポンサーリンク]

概要

アルケンメタセシスではアルキリデン錯体を触媒・アルケンを基質として用いるが、アルキリジン錯体を触媒・アルキンを基質として用いる場合には、アルキンメタセシス(alkyne metathesis)が進行する。アルキン間の置換基に交換が起きる。

生成物の内部アルキンを部分還元することにより、アルケンメタセシスでは難しいアルケンの幾何異性制御が完全に行えるというメリットがある。

単一の生成物を与える閉環アルキンメタセシス(RCAM)が合成化学的には有用であるが、分子間クロスメタセシスも進行する。

基本文献

  •  Pennella, F.; Banks R. L.; Bailey, G. C.  Chem. Commun. 1968, 1548. DOI: 10.1039/C19680001548
  •  Mortreux, A.; Blanchard, M. JCS Chem. Commun. 1974, 786. doi:10.1039/C39740000786
  • Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932. doi:10.1021/ja00403a058
  • Fürstner, A.; Seidel, G. Angew. Chem. Int. Ed. 1998, 37, 1734. [abstract]
  • Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. doi:10.1021/ja992074k
<review>

開発の歴史

1968年にBailleyらは酸化タングステン/シリカゲル触媒の存在下、2つの異なるジアリールアルキンのアリール基が置き換わる反応を報告した。しかし、この反応は200℃〜450℃と高温を必要としていた。

1974年にフランスの化学者Mortreuxらによって本反応にMo(CO)6-フェノール触媒系が有効であることが示され、160℃、3hで反応が進行する均一系触媒がはじめて報告された。しかしやはり高温反応と官能基許容性の面で不足があった。

その後、有機金属化学分野の発展が後押しする形で炭素―金属三重結合を備える高原子価遷移金属アルキリジン錯体(Schrock alkylidine)の研究が進み、機構面からの基盤構築が進んだ。1981年には、タングステン-アルキリジン錯体が初の構造明確なアルキンメタセシス触媒として働くことがSchrockらによって示された。後にπドナー性の低いフルオロアルコールを配位子として備えるモリブデン-アルキリジン錯体、レニウム-アルキリジン錯体もメタセシス触媒となり得ることが示された。

 

反応機構

可逆的な[2+2]付加環化から生じるsquare-pyramidalなメタラシクロブタジエンを経由する機構にて進行する。

反応例

アルケンメタセシスでアルケンを合成するとE/Z混合物が生じてしまう。アルキンメタセシス→部分還元のプロトコルに変更することでこの点を解決出来る[1, 2]。

ニトリル-アルキン間のクロスメタセシス反応[3]

天然物全合成への応用

Fürstnerらによって、合成手法としての研究が精力的に行われている。

Epothilone Cの合成[4] :タングステン触媒はルイス塩基性官能基に弱い一方で、モリブデンアミド錯体とCH2Cl2から系中生成する触媒活性種[5]はこの課題をクリアしている。

NakadomarinAの全合成[6]:脂肪族アルコールよりもπドナー性の低いシラノールをリガンドとしたMo-phen錯体は、bench-stableな触媒前駆体である。ZnCl2もしくはMnCl2共存下に活性種を系中生成させ、極めて官能基許容性に優れたアルキンメタセシス反応を進行させる[7]。

Sinulariadiolideの合成[8]:基質にアルコールが存在すると、シラノール配位子と交換してしまい触媒が失活する。これを防ぐためにトリシラノール型配位子を備えたCanopy型メタセシス触媒[9]が設計され、用いられている。

参考文献

  1. (a) Fürstner, A.; Seidel, G. Angew. Chem. Int. Ed. 1998, 37, 1734. [abstract] (b) Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. doi:10.1021/ja992074k
  2. (a) Radkowski, K.; Sundararaju, B.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 355. doi:10.1002/anie.201205946 (b) Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 18, 2182. doi:10.1039/B207169J
  3. Geyer, A. M.; Gdula, R. L.; Wiedner, E. S.; Johnson, M. J. A. J. Am. Chem. Soc. 2007, 129. 3800. doi:10.1021/ja0693439
  4. Fürstner, A.; Mathes, C.; Lehman, C. W. Chem. Eur. J. 2001, 7, 5299. [abstract]
  5. Fürstner, A.; Mathes, C. Org. Lett. 2001, 3, 221. doi:10.1021/ol0068795
  6. Boeckman, R. K.; Wang, H.; Rugg, K. W.; Genung, N. E.; Chen, K.; Ryder, T. R. Org. Lett. 2016, 18, 6136. doi:10.1021/acs.orglett.6b03137
  7. (a) Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A. J. Am. Chem. Soc. 2010, 132, 11045. doi:10.1021/ja104800w (b) Heppekausen, J.; Stade, R.; Kondoh, A.; Seidel, G.; Goddard, R.; Fürstner, A. Chem. Eur. J. 2012, 18, 10281. doi:10.1002/chem.201200621 (c) Persich, P.; Llaveria, J.; Lhermet, R.; de Haro, T.; Stade, R.;Kondoh, A.; Fürstner, A. Chem. Eur. J. 2013, 19, 13047. doi:10.1002/chem.201302320 (d) Thompson, R. R.; Rotella, M. E.; Du, P.; Zhou, X.; Fronczek, F. R.; Kumar, R.; Gutierrez, O.; Lee, S. Organometallics 2019, 38, 4054. doi:10.1021/acs.organomet.9b00430 (e) Thompson, R. R.; Rotella, M. E.; Zhou, X.; Fronczek, F. R.; Gutierrez, O.; Lee, S. J. Am. Chem. Soc. 2021, 143, 9026. doi:10.1021/jacs.1c01843
  8. Meng, Z.; Fürstner, A.  J. Am. Chem. Soc. 2019, 141, 805. doi:10.1021/jacs.8b12185
  9. (a) Hillenbrand, J.; Leutzsch, M.; Fürstner, A. Angew. Chem. Int. Ed. 2019, 58, 15690. doi:10.1002/anie.201908571 (b) Hillenbrand, J.; Leutzsch, M.; Yiannakas, E.; Gordon, C. P.; Wille, C.; Nöthling, N.; Copéret, C.; Fürstner, A. J. Am. Chem. Soc. 2020, 142, 11279. doi:10.1021/jacs.0c04742 (c) Haack, A.; Hillenbrand, J.; Leutzsch, M.; van Gastel, M.; Neese,F.; Fürstner, A. J. Am. Chem. Soc. 2021, 143, 5643. doi:10.1021/jacs.1c01404

関連反応

関連書籍

Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (English Edition)

Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (English Edition)

¥24,630(as of 11/06 19:37)
Release date: 2014/10/08
Amazon product information

関連試薬

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ペタシス・フェリエ転位 Petasis-Ferrier Rear…
  2. メルドラム酸 Meldrum’s Acid
  3. マイケル付加 Michael Addition
  4. 福山クロスカップリング Fukuyama Cross Coupl…
  5. 三枝・伊藤 インドール合成 Saegusa-Ito Indole…
  6. 有機亜鉛試薬 Organozinc Reagent
  7. ルボトム酸化 Rubottom Oxidation
  8. 有機銅アート試薬 Organocuprate

注目情報

ピックアップ記事

  1. 水を還元剤とする電気化学的な環境調和型還元反応の開発:化学産業の「電化」に向けて
  2. 韓国に続き日本も深刻化?トラック運送に必要不可欠な尿素水が供給不安定
  3. 量子力学が予言した化学反応理論を実験で証明する
  4. CYP総合データベース: SuperCYP
  5. 一次元の欠陥が整列した新しい有機−無機ハイブリッド化合物 -ペロブスカイト太陽電池の耐久性向上に期待-
  6. 金属容器いろいろ
  7. 化学ベンチャーが食品/医薬/化粧品業界向けに温度検知ゲル「Thermo Tracker(サーモトラッカー)」を開発
  8. 製薬会社のテレビCMがステキです
  9. ネオジム磁石の調達、製造技術とビジネス戦略【終了】
  10. 新規糖尿病治療薬「DPPIV阻害剤」‐熾烈な開発競争

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

サステナブル社会の実現に貢献する新製品開発

味の素ファインテクノ社が開発し、これから事業に発展して、社会に大きく貢献する製品…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP