[スポンサーリンク]

化学者のつぶやき

高選択的な不斉触媒系を機械学習と「投票」で予測する

[スポンサーリンク]

2019年にこちらの記事でイリノイ大学・Scott E. Denmark教授らの三次元分子構造を用いた機械学習による不斉触媒反応における選択性予測を可能とするワークフロー[1]が紹介されています。その後、2022年に同教授がこれを用いた高不斉収率を示す触媒の開発に成功していましたので紹介します。今回はこのワークフローをそのまま使っただけでなく、「投票」を利用する、という工夫しています。

“High-Level Data Fusion Enables the Chemoinformatically Guided Discovery of Chiral Disulfonimide Catalysts for Atropselective Iodination of 2-Amino-6-arylpyridines.”

Rose, B. T.; Timmerman, J. C.; Bawel, S. A.; Chin, S.; Zhang, H.; Denmark, S. E.

J. Am. Chem. Soc. 2022, 144 (50), 22950-22964. DOI: 10.1021/jacs.2c08820

概要

機械学習を用いた触媒改良法の詳細[1]については、2019年記事をご覧ください。今回は、下に示すフェニルピリジン 1 のヨウ素化によって生じるアトロープ異性体 2 を不斉合成する新反応開発を試みているところに、この機械学習ワークフローを使って、最適な触媒 3d を見出すに至っています(図1上)。この反応の開発に取り組んだ理由は、創薬的な需要があるものの、現実的に有効な手段が無かったから、とのことです。

図1 今回の研究成果(上)と、関連する臭素化に関わる先行研究(下)

関連するエナンチオ選択的な臭素化反応は Miller, 秋山らによって開発されていました(図1下)。Denmark らの以前の検討[1]でも秋山らのキラルなリン酸触媒が良好な結果を与えていたため、最初はこれらの方法を参考にリン酸を試したものの、今回の系ではリン酸よりもスルホンイミド 3a を使った方がエナンチオ選択性 (enantiomeric ratio, er) が高いことがわかりました(図2)。しかし、条件検討ではエナンチオ選択性もこれ以上改善しなかった上に、基質によっては満足のいくエナンチオ選択性が得られなかったため、より選択性と汎用性の高い触媒を同定するために先述の機械学習を利用したワークフローを適用するに至ったようです。

図2 初期検討で見出した 3a を利用して調査したエナンチオ選択的なヨウ素化反応の基質適用範囲

方法

以下のフローで実施しています。詳細は2019年記事に詳しく書かれていますので割愛します。

  1. 触媒構造の Core を生成(MMとDFT計算を利用):ビナフチル 3 と水素化ビナフチル 4 を選択
  2. 739個の置換基から 1478個のバーチャル触媒ライブラリーを創出(ccheminfolibとpythonを利用)
  3. 最適化(Maestro)、配座の発生(OPLS3e)、調節(Maestroで計算をするのにNHをBHにしていたのをNHに戻す)
  4. 前報[1]で利用していた記述子:平均立体占有率(ASO, 1Å格子)を計算(+電子状態の配慮)
  5. K-平均クラスタリングによって 21個の触媒候補(ユニバーサルトレーニングセット)を選出、そのうち合成可能な18種の合成に成功(図3)

図3 ライブラリからクラスタリングによって選出、合成した18の触媒

 

結果

実際に合成した触媒18種 x 基質13種類の 234 実験を実施し、図4に示す結果を得ています。さすがに人力ではなく、反応はハイスループット装置で、解析は二次元LCで実施しています。

図 4 UTS(触媒)を利用した不斉反応の結果。縦軸は鏡像体過剰率(ee)。図は論文[1]より引用。

この実験結果をもとにした機械学習によって4s, 4u, 4t の3つの触媒がよいと求められました。いくつかの基質に対しては高いエナンチオ選択性が予想できるものだったものの、期待に反して、いずれの触媒も一般性が低い結果となりました(図5)。

図 5 機械学習によって提案された触媒3つ。しかし、予想された基質一般性は期待したよりも低かった。グラフは論文[1]より引用。

また、さまざまな回帰方法をためしてもこの点は改善しなかったことから、基質の種類に応じた特定の相互作用が加味されていないと筆者らは考え、「投票制」によって最適な触媒を選ぶこととしました。すなわち、基質ひとつひとつが「投票者」となって、UTSを用いた実験結果を利用して、一つの基質に関して最も優れた結果を与える触媒を1478個のバーチャル触媒の中から選出し、その投票数の順に触媒を選んでいく、という方法です。13人の基質が投票した結果、得票数を最も多く集めた触媒として 3d, 4w, 4x が選出されました(図6)。

図 6 投票の結果。グラフは論文[1]より引用。

この三つの中でも最も合成しやすい 3d を用いて触媒反応を実施したところ、投票人のみならず、それ以外の基質に対しても良好な結果を与えることがわかりました(図7)。図2に示した 2a2b の合成における選択性も改善されています(2a 91:9→96:4)(2b 82:18→96:4)。

図7 最適な触媒 3d を使った時の基質適用範囲。下段は投票人以外の基質。

私見

  • 前報をうまく使って触媒の改良をしようとして、うまくいった結果のみならず、初期の使い方の失敗やその解決のプロセス(投票の考案など)は、機械学習を利用した化学研究における考え方として示唆に富んでいる。
  • ある程度、適用しやすい反応の種類を選んで検証している。この方法の前提としてある程度の実験量が必要なことからハイスループットな反応実施と解析法が揃っていることが必要。
  • 研究の進展に伴って計算方法や反応条件の微調整がなされている。詳細は不明だが、時間や手間の問題もあるのでこのあたりの事情は理解できなくもない。

関連記事

参考文献

  1.  (a) Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631. DOI: 10.1126/science.aau5631 (2) Reivew: Rinehart, N. I.; Zahrt, A. F.; Henle, J. J.; Denmark, S. E. Acc. Chem. Res. 2021, 54 , 2041-2054. DOI: 10.1021/acs.accounts.0c00826 
Avatar photo

Naka Research Group

投稿者の記事一覧

研究グループで話題となった内容を紹介します

関連記事

  1. 有機強相関電子材料の可逆的な絶縁体-金属転移の誘起に成功
  2. 僕がケムステスタッフになった三つの理由
  3. 日本薬学会第138年会 付設展示会ケムステキャンペーン
  4. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  5. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  6. 熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-
  7. 2011年イグノーベル賞決定!「わさび警報装置」
  8. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①

注目情報

ピックアップ記事

  1. 京大北川教授と名古屋大学松田教授のグループが”Air Liquide Essential Molecules Challenge”にて入賞
  2. 荷電処理が一切不要な振動発電素子を創る~有機EL材料の新しい展開~
  3. 合成化学の”バイブル”を手に入れよう
  4. 新規作用機序の不眠症治療薬ベルソムラを発売-MSD
  5. キャロライン・ベルトッツィ Carolyn R. Bertozzi
  6. 第21回ケムステVシンポ「Grubbs触媒が導く合成戦略」を開催します!
  7. 人物でよみとく化学
  8. 可視光照射でトリメチルロックを駆動する
  9. 新規糖尿病治療薬「DPPIV阻害剤」‐熾烈な開発競争
  10. ポンコツ博士の海外奮闘録⑦〜博士,鍵反応を仕込む〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP