[スポンサーリンク]

スポットライトリサーチ

“呼吸するセラミックス” を使った酸素ガス分離・製造

[スポンサーリンク]

第587回のスポットライトリサーチは、神奈川大学本橋輝樹研究室の小川哲志(おがわ さとし)プロジェクト助教にお願いしました!

本橋研究室では、環境問題やエネルギー問題の解決に繋がるような様々な機能性セラミックスを開発されている研究室です。今回紹介いただけるのは、温度に依存して酸素の吸収・放出をできる、まさに呼吸するようなセラミックスを開発されたという成果です。セラミックスと聞くと固いイメージを持つ方も多いと思いますが、今回のような驚きの動的な機能も持たせることができるという意外性もある成果です。Journal of American Chemcal Society誌に原著論文として採択された大注目の成果です! プレスリリースもされています!

 “New Triclinic Perovskite-Type Oxide Ba5CaFe4O12 for Low-Temperature Operated Chemical Looping Air Separation”,
Satoshi Ogawa, Sayaka Tamura, Hisanori Yamane, Toyokazu Tanabe, Miwa Saito, and Teruki Motohashi*, J. Am. chem. soc. 2023, 145, 22788-22795. DOI:10.1021/jacs.3c08691

研究室主催者の本橋先生からは、以下のコメントをいただきました。

2017年、小川哲志さんが蓄電池開発のプロジェクト研究員として当研究室に加わりました。当初この事業ではポスドク研究員を募集していましたが、修士課程修了後に高校教員を務めていた小川さんから当該ポストの採用要件について問い合わせを受けたのがきっかけでした。面談してみると、彼は学生時代の蛍光体研究で培ったセラミックス合成の豊富な知識を備えており、加えて研究活動の場を求めてアプローチしてくれた熱意に期待を感じ、彼とともに研究を進めることを決めました。小川さんは着任後すぐに、新たな酸素発生反応触媒の開発に成功し、その後も多数の学術論文や特許を含めた顕著な成果を積み重ねてきました。蓄電池のプロジェクト終了後も当研究室に残り、さまざまな無機材料の開発を手がけた結果、新たな酸素貯蔵材料の発見に繋がりました。酸素貯蔵材料の研究は、私が本学に着任する前から長年続けている思い入れの深いテーマであり、今回の成果は新規性と性能面で世界をリードする内容になっていると自負しています。小川さんには今後も革新的な機能性材料の開発において重要な役割を果たすことを期待しています。

それでは、小川さんからの熱いメッセージを含むインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

新しい鉄系酸化物、Ba5CaFe4O12を発見し、この酸化物が “呼吸するセラミックス” ともいえる酸素貯蔵材料として優れた特性(低温動作・高速応答)を示すことを見出しました。また、Ba5CaFe4O12は未知の5重ペロブスカイト型構造(図1)をもち、固体化学の分野でも非常に興味深い存在です。

酸素貯蔵材料は、温度や酸素濃度の変化に応答して周囲の酸素ガスを吸い込んだり、取り込んだ酸素を吐き出したりする機能をもち、まるで呼吸をしているようにふるまうセラミックスです。空気中から純粋な酸素のみを分離できることから、酸素ガス製造技術である化学ループ空気分離 (CLAS: Chemical looping air separation) に革命をもたらす可能性があります。従来の酸素貯蔵材料は動作させるために高温が必要でしたが、Ba5CaFe4O12は400 °C未満の比較的低温で動作します。この低温動作は、製鉄所などの未利用の排熱を活用することによりエネルギー効率の良い酸素製造システムの実現を可能にします。本化合物の酸素吸収量と応答速度は非常に大きく、例えば370 °Cにおいて1度に体積の40倍以上の酸素ガスを5分間で吸収・放出できます。これを5 kgのBa5CaFe4O12に換算すると、1日に約12,000 L(大きなガスボンベ2本弱に相当)の酸素ガスを製造できる計算になります。これは過去に報告されたSr0.76Ca0.24FeO3−δと比べて180°Cも低い温度でありながら3倍の製造能力となります。さらに本化合物は安価で資源的に豊富な元素のみで構成されており、材料コストの面でも優れていることも特長です。

図1. Ba5CaFe4O12の結晶構造(左)と結晶構造変化を伴う酸素吸収放出サイクルの概念図. 左:酸素放出状態, 右:酸素吸収状態(模式図). 酸素放出状態の酸素欠損部位を酸素原子が出入りする.

 

Q2. 本研究テーマについて、思い入れがあるところを教えてください。

今回発見したBa5CaFe4O12は、“酸素欠損ペロブスカイト型酸化物”と呼ばれるものです。一般式ABX3で表されるペロブスカイト型化合物は機能性の宝庫であり、古くから多くの研究者によって盛んに研究されてきました。そのため、新しい発見をするのは難しいですが、私たちは一般的な理解を逸脱するアプローチをとり今回の研究成果を達成しました。

一般的な酸化物では、サイズの大きなCa2+イオンはペロブスカイト型構造のAサイトを占有します。一方、Ba5CaFe4O12はBサイトにCa2+イオンを含むユニークな結晶構造をもっており、その意外な化学組成により研究があまり行われてきませんでした。実際、合成した酸化物は粉末X線回折実験では複雑な回折図形を示し、未知の結晶構造をもつことが示唆されました。結晶構造の解明には単結晶X線回折実験が非常に有効ですが、本化合物では一般的に想像される単結晶のサイズよりも小さい数十μmの粒子しか得られませんでした。しかし東北大学多元研 山根久典教授との共同研究によって結晶構造解析に成功し、新規5重ペロブスカイト型構造であることを明らかにしました。

本研究は、従来の固定観念にとらわれず、非伝統的な材料設計を採用することによって未踏探索領域を拓き、材料開発におけるブレイクスルーをもたらした成果のひとつだと考えています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

この研究の最大の挑戦は、意図せず遭遇した「未知化合物」の発見と、それをどのように扱うかであり、当研究室にポスドクとして在籍していた田村紗也佳さん(論文の第二著者)によるBa4CaFe3O9.5の合成実験が発端でした。この化合物は物性物理分野では既知であったのですが、合成の再現が得られないことに直面しました。田村さんは、予期せぬ生成物が「合成失敗」ではなく、新しい化合物が偶然生成したのかもしれないと考え、その特性を調べ始めました。

田村さんが明治大学へ異動された後、私がこの研究を引き継ぎ、合成方法を見直して精緻に合成するプロセスを確立しました。結果として、新しい化合物が既存の酸化物よりも優れた特性を示すことを明らかにし、さらに単結晶X線回折と電子顕微鏡観察を駆使して本材料の複雑な結晶構造の決定を達成しました。

この研究で重要だったのは、日常の実験での新しい研究の「種」を見逃さないこと、そして、予期せぬ結果に直面しても根気強く追求することでした。この粘り強さが、今回の革新的な成果に繋がったと考えています。

Q4. 将来は化学とどう関わっていきたいですか?

私は「未知の可能性を秘めた新しい材料」の発見に魅力を感じています。現在の材料科学は応用面での成果が重視され、多くの研究者もそちらに注力することが多いですが、私の興味は、今はまだ用途もわからない新しい物質の創出にあります。

今回の成果では応用が明確な新物質を見出しましたが、「昨日まで世界になかった新しいもの」を発見し、それが将来的にどのような分野で役立つのか見極めることを常に目指しています。これらの発見が、後世で大きな価値をもつかもしれないと信じています。そのために、日々の研究においても、新しいアイディアやコンセプトを追求し続けるつもりです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

化学系の学生や院生の皆さんに向けて、私自身の研究の宣伝を兼ねてメッセージを送りたいと思います。化学と一言で言っても、その分野は非常に広範で、無限の可能性を秘めています。私の専門分野である無機固体材料(セラミックス)の研究も、その一環です。

セラミックス研究は、他のメジャーな分野と比べると研究者人口は多くないかもしれませんが、非常に奥深く、未知の可能性を探る魅力があります。今回のこの紙面では、この面白さや重要性を十分に伝えきれていない部分もありますが、本成果の論文はオープンアクセスで公開されており、興味を持った方はどなたでも閲覧可能です。(本学から発表されたプレスリリースは、もう少し専門的な内容を日本語で記載していますので、そちらもぜひご覧ください。)

論文では、酸素貯蔵材料の研究背景や、実験データ、そしてそれがもつ意義について詳しく説明しています。これからの化学者としての道を歩む皆さんには、この分野の可能性に触れ、新しい発見への扉を開いていただければ幸いです

関連リンク

  1. 研究室HP:神奈川大学化学生命学部応用化学科 本橋研究室
  2. 神奈川大学プレスリリース

研究者の略歴

名前:小川 哲志(おがわ さとし)
所属:神奈川大学 化学生命学部 応用化学科 本橋輝樹研究室
専門:機能性セラミックス合成
略歴:
2008/4-2012/3 東海大学 理学部 化学科
2012/4-2014/3 東海大学大学院 理学研究科 化学専攻 修士(理学)
冨田恒之研究室にて、光機能性セラミックスの水溶液プロセス(特に水熱法)による合成に関する研究
2014/4-2017/3 平塚学園高等学校 非常勤講師(理科)
2017/4-現在 神奈川大学 化学生命学部 応用化学科 本橋輝樹研究室(プロジェクト研究員、プロジェクト助教)
レドックスを駆動力とする機能性セラミックスの開発
NEDOプロジェクト「RISING2」:金属空気電池に向けた酸素反応電極触媒の開発
学術変革A「超セラミックス」:超セラミックスの開発

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑤:ショットノ…
  2. 648個の誘導体を合成!ペプチド創薬の新手法を開発
  3. 光レドックス触媒反応 フォトリアクター Penn PhD Pho…
  4. 高専の化学科ってどんなところ? -その 1-
  5. 【チャンスは春だけ】フランスの博士課程に応募しよう!【給与付き】…
  6. 化学者のためのエレクトロニクス講座~無電解卑金属めっきの各論編~…
  7. 目指せ!! SciFinderマイスター
  8. 不溶性アリールハライドの固体クロスカップリング反応

注目情報

ピックアップ記事

  1. ジョン・フェン John B. Fenn
  2. ご注文は海外大学院ですか?〜準備編〜
  3. 黒田 玲子 Reiko Kuroda
  4. 博士号とは何だったのか - 早稲田ディプロマミル事件?
  5. 【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編
  6. コロナウイルスCOVID-19による化学研究への影響を最小限にするために
  7. 化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編
  8. 「オープンソース・ラボウェア」が変える科学の未来
  9. 国内初のナノボディ®製剤オゾラリズマブ
  10. 初めての減圧蒸留

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP