[スポンサーリンク]

ケムステニュース

可視光全域を利用できるレドックス光増感剤

[スポンサーリンク]

東京工業大学 理学院 化学系の玉置悠祐助教、入倉茉里大学院生および石谷治教授は、新たに合成したオスミウム錯体を用い、従来は利用不可能であった近赤外線を含む可視光の全波長領域を利用しながら二酸化炭素を還元できる光増感剤を開発した。太陽光をより有効に活用しながら二酸化炭素を資源化する新たな光触媒システムの創出に成功した。 (引用:東工大プレスリリース10月29日)

9月に光にまつわる東工大プレスリリースを2報を紹介しましたが、また新たな光に関係する成果が発表されたので紹介させていただきます。本研究ではオスミウム錯体で可視光の全波長領域を利用して二酸化炭素を還元することに成功しました。

まず研究の背景として金属錯体を使って光反応による二酸化炭素の還元や、水素の発生、水の酸化などが近年盛んに研究されています。これらの実用を考える上では、太陽光で効率良く反応を進行させることが必要ですが、280-550 nmの光の放射照度は、地表に到達する太陽光全体の14%しかないものの、280-800 nmの場合では40%となります。そのため、より長波長側の光も吸収できる光増感剤を使うことは、太陽光における反応効率を上げることにつながります。レドックス光増感剤による有機合成反応においても、反応系中に存在する化合物が光の副反応を誘発し、本来の反応の効率が低下してしまいます。そのため、可視光の全波長領域を吸収できるレドックス光増感剤は重要となっています。

ルテニウム(II)トリスジイミン錯体は可視光を吸収するため、レドックス光増感剤としてよく使われていますが、可視光波長の吸収は限られていることが欠点で、例えば[Ru(bpy)3]2+ の場合では550 nm以下の光のみを吸収します。より長波長の光を吸収するための簡単な方法はHOMO-LUMOのエネルギー差を小さくすることですが、これにより励起寿命も短くなってしまい還元能が低下するためレドックス光増感剤としては、使うことができないことが分かっています。他の戦略として基底状態から三重項に励起させるS-T遷移を活用する方法があり、600-750 nmの光を使ってオスミウム(II)錯体を触媒として水素の発生と光増感剤として有機合成に使われています。しかしながら、先行研究のオスミウム(II)錯体は800 nmまでの光は吸収せず、本研究では全波長領域を吸収できるレドックス光増感剤の開発を目指しました。

筆者らは、メチルベンゾイミダゾールからより強いσ寄与が長波長吸収を誘発すると考え、異なる配位子をもつ錯体(Os)をデザインし、合成しました。

錯体の合成スキームと構造式(引用:原著論文

合成したオスミウム錯体の吸収スペクトルを測定すると、他のオスミウム錯体より長波長の吸収が観測されました。DFT/TD-DFTを使った安定構造と分子軌道、吸収スペクトルの推定では、S-T遷移がこの長波長吸収に寄与していることを支持する計算結果が得られました。

Os(緑色)、[Os(5dmb)2(dmb)]2+(黒色)、 [Os(mtpy)2]2+(赤色)の吸収スペクトル(引用:原著論文

DFT計算によるOsのエネルギーダイアグラムとフロンティア分子軌道(引用:原著論文

サイクリックボルタンメトリーでは、オスミウム(II)の一電子酸化(+0.35 V)と配位子の一電子還元(-1.57, -1.89 V)に帰属される3点の酸化還元対が観測されました。この結果によりOsは一電子還元種の還元能が強く、このサイクリックボルタンメトリーの測定条件で観測できるほど安定であることが示唆されました。

Osのサイクリックボルタンメトリー(引用:原著論文

蛍光スペクトルの測定では、456 nmの励起光に対して、795 nmの蛍光において0.3%の量子収率と40 nsの傾向寿命が観測され、長波長と長寿命はトレードオフの関係関係であることが一般的である中、Osはそれを両立しておりレドックスとして必要不可欠な光物性を有していることが示されています。さらに、励起光の波長が変わっても795nm近辺の蛍光スペクトルの形は変わらないこと、795nmの蛍光でプロットした励起スペクトルと吸収スペクトルの形も変わらないことから1MLCTと3MLCT励起状態は、最も低い3MLCT励起状態に速やかに緩和し、この励起状態は光の放射ありなしどちらかの減衰過程も経て基底状態に戻ることが示唆されました。

a: 励起光の波長を変化して蛍光スペクトルを測定した結果 b:(赤色)795 nmの励起光での蛍光スペクトル (緑色)吸収スペクトル(引用:原著論文

二酸化炭素で飽和した溶媒にOsと1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole: BI(OH)Hを加えて480 nmの光を照射し、Osの変化を吸収スペクトルで追跡しました。すると、反応後には、530 nmと800 nmに新たな吸収が観測され、3MLCT励起状態からBI(OH)Hと反応しOs˙が発生していることを明確に示しています。

a: 反応時間ごとの溶液の吸収スペクトル b: 0 minとの差スペクトル(引用:原著論文

最後に二酸化炭素の還元反応をOsを光増感剤、Ru(bpy)(CO)2Cl2Ru(CO)を触媒、BI(OH)Hを犠牲還元剤として使用し725 nmのLED光照射下で実施しました。結果、40時間の反応で96%のギ酸選択性を示しました。

各生成物の生成量とTON(引用:原著論文

生成したギ酸の炭素源を突き止めるために 13CO2で反応を行いました。反応前後で溶液の NMRを比較すると、13C由来のギ酸ピークが確認され、二酸化炭素が還元されてギ酸が生成していることを確認しました。

a: 反応前 b:反応後の13C{1H} NMR c:デカップリングなしの13C NMR(引用:原著論文

反応後のH NMR、13CでEnrichされているためピークが分裂している。(引用:原著論文

 

さらに、長波長光での反応性を調べるために、770 nm以上に極大を持つ光源で反応を実施しました。すると、Osで特異的にギ酸が生成することが分かり、全波長領域を利用できる光増感剤であることを確認しました。

光増感剤ごとのギ酸の生成量とTON(引用:原著論文

まとめとして、オスミウム錯体Osの特性、800nmまでの光を吸収できることと40 nsの励起状態の寿命を持つことを発見し、S-T遷移によって全波長の吸収と励起状態の長寿命がもたらされていることが示されました。Ru(CO)を触媒とした二酸化炭素の還元では、725nmに極大を持つ光でも反応が進行し、700 nmの以上の光照射での初めての二酸化炭素の還元例となりました。

太陽光で反応を進行させて、二酸化炭素の資源化できる可能性を示された研究結果であり興味深い内容だと思います。反応効率が低く、さらなる性能向上が必要であるとのコメントがプレスリリースには掲載されており、更なる光増感剤の改良に期待します。太陽光での反応に最適化された触媒や光増感剤の開発はもちろん重要ですが、太陽光を効率的に溶液に照射する実用的な手段の開発も積極的に進める必要があると思います。化学の研究論文で発表された物質が近い将来、昨今の環境問題を解決するようになることを願います。

関連書籍

関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開…
  2. マンダム、不快刺激が少なく持続的な清涼成分を発見 ~夏をより快適…
  3. ノーベル化学賞明日発表
  4. DNAに電流通るーミクロの電子デバイスに道
  5. 書いたのは機械。テキストの自動生成による初の学術文献が出版
  6. 米デュポンの7-9月期、ハリケーン被害などで最終赤字
  7. エーザイ 抗がん剤「ハラヴェンR」日米欧で承認取得 
  8. 「抗菌」せっけん、効果は「普通」…米FDA

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 夏の必需品ー虫除けスプレーあれこれ
  2. 2011年イグノーベル賞決定!「わさび警報装置」
  3. モヴァッサージ脱酸素化 Movassaghi Deoxigenation
  4. カンブリア爆発の謎に新展開
  5. 上田 善弘 Yoshihiro Ueda
  6. 科学とは「未知への挑戦」–2019年度ロレアル-ユネスコ女性科学者日本奨励賞
  7. モリブデン触媒
  8. 化学反応のクックパッド!? MethodsNow
  9. 【朗報】HGS分子構造模型が入手可能に!
  10. Pythonで気軽に化学・化学工学

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
« 10月   12月 »
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

自己多層乳化を用いたマトリョーシカ微粒子の調製 〜油と水を混ぜてすぐ固めるだけ〜

岡山大学学術研究院自然科学学域(工)の渡邉貴一研究准教授と同大学院自然科学研究科博士前期課程の安原有…

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP