[スポンサーリンク]

ケムステニュース

iPhone7は世界最強の酸に耐性があることが判明?

[スポンサーリンク]

YouTubeなどで日本刀に斬られたり、ライフルで撃たれたりしているiPhone 7ですが、酸への耐性を検証した動画によって酸には強いことが判明しました。(引用:ねとらぼ12月1日)

あたりまえじゃん

動画の中での手順を一つ一つ検証していくと、最初にstrem製のフルオロアンチモン酸をプラスチック製のボトルから取り出し、iPhoneの背面にかけています(動画3:25位まで)。確かにフルオロアンチモン酸は硫酸よりも2000京倍強い酸ですが、iPhone7の背面はアルミニウムベースの素材で作られているため、表面のみ反応し不働態を形成したと考えられます。気になる点は、フルオロアンチモン酸が固体になっている点で、使用したSTREM製のフルオロアンチモン酸は、60%の水溶液で液体のはずです。それが固体になっているということは、塩を形成してしまっている可能性があります。フルオロアンチモン酸はガラスを溶かすので、液体状態のフルオロアンチモン酸iPhone7の表面に加えたら実験の結果は変わったかもしれません。

次に過酸化水素(3:38位まで)を投入しています。アルミは、酸化剤と反応して不働態となる酸化アルミニウムを生成し内部のアルミとの反応を抑制します。つまりここでも内部に薬品が到達しないことは明らかです。最後に硫酸(4:11位まで)に五分間浸しています。iPhone7は防水機能がありますが、これはゴム製の防水パッキンが組み込まれていることを意味しています。確かに多くのゴムは硫酸に対して弱く適しませんが、硫酸とゴムが直ちに反応して五分でなくなることは考えにくく当然の結果だと言えます。

Appleはこれを広告にする必要があるとのコメントがありますが、同様の素材を使っているスマートフォンであれば結果は同じだと言え、特にiPhoneだからという特異性はないと私は思います。iPhoneは有名なスマホ故に様々な実験にさらされてきました。とても興味深い実験もいくつかありますが、この実験は化学者にとっては、ただの素材の反応性を確認しただけのことだといえます。もちろん、皆さんの大切なiPhoneに酸をかけるようなマネはしないでください。

関連書籍

[amazonjs asin=”4782706081″ locale=”JP” title=”超分子金属錯体 (錯体化学会選書)”] [amazonjs asin=”4861042801″ locale=”JP” title=”ドライ・ウエットエッチング技術全集”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 三菱化学の合弁計画、中国政府が認可・330億円投資へ
  2. イグノーベル賞2023が発表:祝化学賞復活&日本人受賞
  3. NIMS WEEK2021-材料研究の最新成果発表週間- 事前登…
  4. 身近な食品添加物の組み合わせが砂漠の水不足を解決するかもしれない…
  5. 粉いらずの指紋検出技術、米研究所が開発
  6. 元素も分析する電子顕微鏡
  7. 製薬各社 2011年度 第2四半期決算
  8. 米ファイザーの第3・四半期決算は52%減益

注目情報

ピックアップ記事

  1. Reaxys PhD Prize 2020募集中!
  2. あなたの天秤、正確ですか?
  3. ユニークな名前を持つ配位子
  4. 第18回 Student Grant Award 募集のご案内
  5. 越野 広雪 Hiroyuki Koshino
  6. シアノヒドリンをカルボン酸アミドで触媒的に水和する
  7. 有機合成化学協会誌2021年11月号:英文特集号 Special Issue in English
  8. 光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発
  9. 50年来の謎反応を解明せよ
  10. マテリアルズ・インフォマティクスにおける分子生成の基礎

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP