[スポンサーリンク]

エネルギー化学

宮坂 力 Tsutomu Miyasaka

[スポンサーリンク]

宮坂 力 (みやさか つとむ、1954年9月10日-)は、日本のエネルギー化学・物理化学者である。国際的な通称はTom。2019年5月現在、桐蔭横浜大学 特任教授。

経歴

1972 早稲田高等学院卒業
1976 早稲田大学理工学部応用化学科 卒業(土田研究室)
1978 東京大学大学院工学系研究科 工業化学修士課程修了(本多健一教授)
1980-1981 カナダ・ケベック大学大学院 生物物理学科 客員研究員
1981 東京大学大学院工学系研究科合成化学博士課程修了
1981富士写真フィルム入社
2001-2017 桐蔭横浜大学大学院工学研究科教授
2017-現在 桐蔭横浜大学医用工学部臨床工学科 特任教授

受賞歴

2002 (財)化学技術戦略推進機構「アカデミアショーケース」
2004 横浜市ベンチャービジネスプランコンテスト「アカデミー賞」
2011 Scientific American 50 selection
2016 グリーンサステナブルネットワーク文部科学大臣賞
2017 クラリベイト・アナリティクス引用栄誉賞 化学分野 受賞
2019 応用物理会業績賞

研究概要

鉛ハライドペロブスカイト化合物の色素増感太陽電池への応用

2009年に有機無機ハイブリッド鉛ハライドペロブスカイトCH3NH3PbX3(X=I or Br)を色素増感太陽電池の増感剤として用い、変換効率3.8%を報告した[1]。この論文は鉛ハライドペロブスカイトを太陽電池材料として着目した世界で初めての研究で、光電変換材料としての潜在能力に気付くきっかけとなった研究だった。当初はそれほど注目されなかったものの、2012年に全固体化した薄膜太陽電池の作製に成功して安定性と効率が大きく向上し[2]、世界的に研究に火が付いた。ペロブスカイト太陽電池とも呼ばれるこの物質群は光電変換材料の開発の歴史の中でもかつてない速度で急成長を遂げており、本格的に研究され始めて5年のうちにシリコン太陽電池に迫る20%以上の効率を達成している。

宮坂力はこの成果について、ノーベル賞受賞者候補とも呼ばれるクラリベイト・アナリティクス引用栄誉賞を2017年に受賞している。

図1:(左)増感剤としてペロブスカイト物質を用いたTiO2粒子の模式図。 (右)CH3NH3PbX3(X=Br, I)を用いた色素増感太陽電池の量子効率曲線。CH3NH3PbI3を用いたデバイスは可視光領域でバランスよく発電ができ、3.8%の光電変換効率を達成した。文献[1]のTOC画像より引用。

なお、ペロブスカイト太陽電池の成果以外にも、バクテリオロドプシンを用いた生体を模倣した光応答デバイスの研究[3,4]や非晶質SnO2を用いたリチウム貯蔵物質の開発[5]といった優れた業績を残している。

コメント

趣味はバイオリンの演奏や弦楽器の研究。日独化学会の混成オーケストラのコンサートマスターを経験されている。
バイオリンの名器に関する論文を英国の権威ある弦楽器専門誌に寄稿している。
2019年6月現在2009年に発表された論文は引用回数8500超であつ

関連文献

  1. ”Organometal halide perovskites as visible-light sensitizers for photovoltaic cells” Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Ame. Chem. Soc. 2009, 131, 6059. DOI: 10.1021/ja809598r
  2. ”Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites” Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. DOI: 10.1126/science.1228604
  3. ”Quantum Conversion and Image Detection by a Bacteriorhodopsin-Based Artificial Photoreceptor” Miyasaka, T.; Koyama, K.; Itoh, I. Science 1992, 255, 342. DOI: 10.1126/science.255.5042.342
  4. ”Antibody-Mediated Bacteriorhodopsin Orientation for Molecular Device Architectures” Koyama, K.; Yamaguchi, N.; Miyasaka T. Science 1994, 265, 762. DOI: 10.1126/science.265.5173.762
  5. ”Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion–Storage Material” Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Science 1997, 276, 1395. DOI: 10.1126/science.276.5317.1395

関連リンク

関連書籍

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. スティーブン・ジマーマン Steven C. Zimmerman…
  2. ティム・ジャミソン Timothy F. Jamison
  3. 小松紘一 Koichi Komatsu
  4. グレッグ・ウィンター Gregory P. Winter
  5. アレン・バード Allen J. Bard
  6. テッド・ベグリーTadhg P. Begley
  7. ジェレマイア・ジョンソン Jeremiah A. Johnson…
  8. 池田 菊苗 Kikunae Ikeda

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. MILAB ライター募集
  2. センチメートルサイズで均一の有機分子薄膜をつくる!”シンプル イズ ザ ベスト”の極意
  3. セミナー「マイクロ波化学プロセスでイノベーションを起こす」
  4. 絶対に面白い化学入門 世界史は化学でできている
  5. 人と人との「結合」を「活性化」する
  6. シンポジウム・向山先生の思い出を語る会
  7. 分子運動を世界最高速ムービーで捉える!
  8. ヨードホルム (iodoform)
  9. 田中耕一 Koichi Tanaka
  10. 鉄錯体による触媒的窒素固定のおはなし-2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

SDGsと化学: 元素循環からのアプローチ

概要 元素循環化学は、SDGs の達成に寄与するものとして近年関心が増している。本書では、元…

【技術者・事業担当者向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 〜ケミカルリサイクル、焼成、乾燥、金属製錬など〜

<内容>脱炭素化と省エネに貢献するモノづくり技術の一つとして、昨今注目を集めているマイクロ波。当…

分子糊 モレキュラーグルー (Molecular Glue)

分子糊 (ぶんしのり、Molecular Glue) とは、2個以上のタンパク質…

原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新反応

第495回のスポットライトリサーチは、大阪大学大学院工学研究科 応用化学専攻 鳶巣研究室の仲保 文太…

【書評】現場で役に立つ!臨床医薬品化学

「現場で役に立つ!臨床医薬品化学」は、2021年3月に化学同人より発行された、医…

環状ペプチドの効率的な化学-酵素ハイブリッド合成法の開発

第494回のスポットライトリサーチは、北海道大学大学院生命科学院 天然物化学研究室(脇本研究室) 博…

薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界』

3月に入って2022年度も終わりが近づき、いよいよ学会年会シーズンになってきました。コロナ禍も終わり…

【ナード研究所】新卒採用情報(2024年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代…と、…

株式会社ナード研究所ってどんな会社?

株式会社ナード研究所(NARD)は、化学物質の受託合成、受託製造、受託研究を通じ…

マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-

開催日:2023/04/05 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP