[スポンサーリンク]

ホスト分子

ピラーアレーン

[スポンサーリンク]

図1. ピラーアレーンの構造

概要

ジメトキシピラー[n]アレーン (Dimethoxypillar[n]arene、DMP[5]A ) [1], [2]は、(1,4-メトキシフェニレン-メチレン)を構成単位とする環状分子である。[n]は構成単位の数を示しており、主にn = 5もしくは6のものが使われている。それぞれジメトキシピラー[5]アレーンもしくはジメトキシピラー[6]アレーンと呼ぶ。メトキシ基をヒドロキシル基に誘導したものをパーヒドロキシピラー[n]アレーン(Perhydroxypillar[n]arene)と呼称する。

ジメトキシピラー[5]アレーンは、2008年に金沢大学(現・京都大学)の生越友樹先生 らによって初めて合成された。市販品から1段階かつ大量に合成できる点[3]、メトキシ基を足がかりに容易に誘導化できる点[3], [4]、電子不足かつ5 Å程度の物質を環内孔に補足できる点[2]から、超分子化学で広く用いられるようになった。より高次なピラーアレーンや[5]、誘導化したピラーアレーン、そしてその利用に関連した報告は、初の報告から指数関数的に増加している。

 

構造

図2. ピラーアレーンのキラリティ

1,4-ジメトキシベンゼンどうしを、それぞれの2および5位をメチレンで架橋した環状縮合体である。分子中心にn回回転軸をもつ。回転軸の垂直方向から見ると、”柱”状(Pillar)に芳香環(arene) が連なっていることからピラーアレーンと名付けられた。(類似のフェニレン-メチレンを構成単位とするカリックスアレーンは”杯”状(Calix)である。)

回転軸に沿った軸不斉をもち、構造単位に含まれる2つのメトキシ基の向きによって規定される(pS)体および(pR)体が存在する。

ジメトキシピラー[5]アレーンは約5 Å、ジメトキシピラー[6]アレーンは約6 Å程度の内部空孔をもつ。構成単位のジメトキシベンゼンが電子豊富であるため、その内部空孔は電子不足なものが取り込まれやすい。すなわち、アルキルアンモニウム、アルキルピリジニウム、アルキルニトリルなどが包接されやすい[2]。条件によっては直鎖無置換のアルキル基までも包接可能である[6]

 

合成法

ルイス酸(主にBF3·OEt)に触媒されるフリーデルクラフツ型の縮合反応によって合成される。1,4-ジアルコキシベンゼンとパラホルムアルデヒドをルイス酸存在下で撹拌するのみの簡便な合成法である。溶媒がテンプレートになり、選択的な環状生成物を与える。すなわち、適切なテンプレートの存在条件では、より高次なピラーアレーン類の合成も可能であることを示唆している。

 

ジメトキシピラー[5]アレーン[3]

1,4-ジメトキシベンゼン (1.38 g, 10 mmol)を1,2-ジクロロエタン (20 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.93 g, 30 mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、30 °Cで30分撹拌する。反応混合物をメタノールに加えて反応を停止させた後、生じた沈殿を濾取する。沈殿をクロロホルムに溶解させて不溶分を瀘別し、濾液とアセトン (CHCl3:Acetone = 1:1)から再結晶することでジメトキシピラー[5]アレーンを得る。(収量0.83 g, 7.1 mmol, 収率71%)

 

ジ(メチルシクロヘキシル)ピラー[6]アレーン[7]

窒素気流下で1,4-ジ(メチルシクロヘキシル)ベンゼン (300mg, 1.00mmol)をクロロシクロヘキサン (10 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (90mg, 2.98mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、25 °Cで150分撹拌する。反応混合物をメタノールに加え、反応を停止させた後、生じた沈殿を濾取する。この沈殿をシリカゲルカラムクロマトグラフィー(CH2Cl2:Hexane = 1:3)で精製し、目的化合物を得る。(収量0.27 g, 0.14 mmol, 収率87%)

 

ジエトキシピラー[6]アレーン[8]

塩化鉄(III)と塩化コリンを2:1で混合し、100 °Cで緩やかに撹拌する。透明な暗茶色の液体が生成する(これをAとする)。1,4-ジエトキシベンゼン (1.66 g, 10 mmol)をジクロロメタン (150 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.90 g, 30 mmol)を加える。ここに15 mol%のA (0.70 g, 1.5 mmol)を加える。25 °Cで4時間撹拌する。反応混合物に水を加え、反応を停止させる。有機相をNaHCO3, H2O, 飽和食塩水で洗浄する。シリカゲルカラムクロマトグラフィー(CH2Cl2:Petroleum ether = 3:1-100:1)で精製し、目的化合物を得る。(収量0.57 g, 5.3. mmol, 収率53%)

 

誘導化

アルコキシ基を足がかりに誘導化が可能である。例えば過剰量のBBr3でメトキシ基をヒドロキシル基に誘導できる[3]。等量を調節すれば、1つだけのメトキシ基をヒドロキシル基に誘導できる。ヒドロキシル基はwilliamsonエーテル合成を使えば炭素鎖を導入できる。また、トリフラート化すればカップリング反応を受けることも可能である。超分子で用いられる一般的な環状分子(シクロデキストリン、カリックスアレーンなど)と同等以上に誘導化が容易である。この点は広く応用されている理由の一つである。

 

関連リンク

参考文献

  1. ジメトキシピラー[5]アレーン初期合成: Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022–5023, DOI: 10.1021/ja711260m
  2. ピラーアレーンの総説: (a) Ogoshi, T.; Yamagish, T. Bull. Chem. Soc. Jpn. 2013, 86, 312-332, DOI:10.1246/bcsj.20120245, (b) Ogoshi, T.; Yamagish, T. Chem.Commun. 2014, 50, 4776-4787, DOI: 10.1039/C4CC00738G, (c) Ogoshi, T.; Yamagishi, T.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937–8002 DOI: 10.1021/acs.chemrev.5b00765, (d) Cragg, P. J.: Sharma, K. Chem. Soc. Rev. 2012, 41, 597-607 DOI: 10.1039/C1CS15164A
  3. ジメトキシピラー[5]アレーン大量合成法: Ogoshi, T.; Aoki, T.; Kitajima, K.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Org. Chem. 2011, 76, 328–331, DOI: 10.1021/jo1020823
  4. モノ修飾ピラー[5]アレーンの合成: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 7164–7166, DOI: 10.1039/c1cc12333e
  5. 高次ピラーアレーン: Ogoshi, T.; Ueshima, N.; Sakakibara, F.; Yamagishi, T.; Haino, T. Org. Lett. 2014, 16,2896-2899, DOI:10.1021/ol501039u
  6. アルキル基の包接: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 10290-10292, DOI: 10.1039/C1CC14395F, Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. Angew. Chem. Int. Ed. 2015, 54, 9849–9852 DOI: 10.1002/anie.201503489 
  7. ジ(シクロヘキシルメトキシ)ピラー[6]アレーンの合成法: Ogoshi, T.; Ueshima, N.; Akutsu, T.; Yamafuji, D.; Furuta, T.; Sakakibara, F.; Yamagishi, T. Chem. Commun. 2014, 50, 5774-5777, DOI: 10.1039/C4CC01968G
  8. ジエトキシピラー[6]アレーン: Cao, J.; Shang, Y.; Qi, B.; Sun, X.; Zhang, L.; Liu, H.; Zhang, H.; Zhoua, X. RSC Adv. 2015, 5, 9993-9996, DOI: 10.1039/C4RA15758C

関連書籍

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. ジブロモインジゴ dibromoindigo
  2. ヘロナミドA Heronamide A
  3. みんなおなじみ DMSO が医薬品として承認!
  4. ペンタシクロアナモキシ酸 pentacycloanamoxic…
  5. モルヒネ morphine
  6. ブレビコミン /Brevicomin
  7. コエンザイムQ10 /coenzyme Q10
  8. アスパルテーム /aspartame

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. もっとも単純な触媒「プロリン」
  2. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  3. Spiber株式会社ってどんな会社?
  4. フローシステムでペプチド合成を超高速化・自動化
  5. “click”の先に
  6. ククルビットウリルのロタキサン形成でClick反応を加速する
  7. F. S. Kipping賞―受賞者一覧
  8. 創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO”選抜プログラムへの参加チーム募集中!
  9. ポヴァロフ反応 Povarov Reaction
  10. What’s Cooking in Chemistry?: How Leading Chemists Succeed in the Kitchen

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP