[スポンサーリンク]

ホスト分子

ピラーアレーン

[スポンサーリンク]

図1. ピラーアレーンの構造

概要

ジメトキシピラー[n]アレーン (Dimethoxypillar[n]arene、DMP[5]A ) [1], [2]は、(1,4-メトキシフェニレン-メチレン)を構成単位とする環状分子である。[n]は構成単位の数を示しており、主にn = 5もしくは6のものが使われている。それぞれジメトキシピラー[5]アレーンもしくはジメトキシピラー[6]アレーンと呼ぶ。メトキシ基をヒドロキシル基に誘導したものをパーヒドロキシピラー[n]アレーン(Perhydroxypillar[n]arene)と呼称する。

ジメトキシピラー[5]アレーンは、2008年に金沢大学(現・京都大学)の生越友樹先生 らによって初めて合成された。市販品から1段階かつ大量に合成できる点[3]、メトキシ基を足がかりに容易に誘導化できる点[3], [4]、電子不足かつ5 Å程度の物質を環内孔に補足できる点[2]から、超分子化学で広く用いられるようになった。より高次なピラーアレーンや[5]、誘導化したピラーアレーン、そしてその利用に関連した報告は、初の報告から指数関数的に増加している。

 

構造

図2. ピラーアレーンのキラリティ

1,4-ジメトキシベンゼンどうしを、それぞれの2および5位をメチレンで架橋した環状縮合体である。分子中心にn回回転軸をもつ。回転軸の垂直方向から見ると、”柱”状(Pillar)に芳香環(arene) が連なっていることからピラーアレーンと名付けられた。(類似のフェニレン-メチレンを構成単位とするカリックスアレーンは”杯”状(Calix)である。)

回転軸に沿った軸不斉をもち、構造単位に含まれる2つのメトキシ基の向きによって規定される(pS)体および(pR)体が存在する。

ジメトキシピラー[5]アレーンは約5 Å、ジメトキシピラー[6]アレーンは約6 Å程度の内部空孔をもつ。構成単位のジメトキシベンゼンが電子豊富であるため、その内部空孔は電子不足なものが取り込まれやすい。すなわち、アルキルアンモニウム、アルキルピリジニウム、アルキルニトリルなどが包接されやすい[2]。条件によっては直鎖無置換のアルキル基までも包接可能である[6]

 

合成法

ルイス酸(主にBF3·OEt)に触媒されるフリーデルクラフツ型の縮合反応によって合成される。1,4-ジアルコキシベンゼンとパラホルムアルデヒドをルイス酸存在下で撹拌するのみの簡便な合成法である。溶媒がテンプレートになり、選択的な環状生成物を与える。すなわち、適切なテンプレートの存在条件では、より高次なピラーアレーン類の合成も可能であることを示唆している。

 

ジメトキシピラー[5]アレーン[3]

1,4-ジメトキシベンゼン (1.38 g, 10 mmol)を1,2-ジクロロエタン (20 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.93 g, 30 mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、30 °Cで30分撹拌する。反応混合物をメタノールに加えて反応を停止させた後、生じた沈殿を濾取する。沈殿をクロロホルムに溶解させて不溶分を瀘別し、濾液とアセトン (CHCl3:Acetone = 1:1)から再結晶することでジメトキシピラー[5]アレーンを得る。(収量0.83 g, 7.1 mmol, 収率71%)

 

ジ(メチルシクロヘキシル)ピラー[6]アレーン[7]

窒素気流下で1,4-ジ(メチルシクロヘキシル)ベンゼン (300mg, 1.00mmol)をクロロシクロヘキサン (10 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (90mg, 2.98mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、25 °Cで150分撹拌する。反応混合物をメタノールに加え、反応を停止させた後、生じた沈殿を濾取する。この沈殿をシリカゲルカラムクロマトグラフィー(CH2Cl2:Hexane = 1:3)で精製し、目的化合物を得る。(収量0.27 g, 0.14 mmol, 収率87%)

 

ジエトキシピラー[6]アレーン[8]

塩化鉄(III)と塩化コリンを2:1で混合し、100 °Cで緩やかに撹拌する。透明な暗茶色の液体が生成する(これをAとする)。1,4-ジエトキシベンゼン (1.66 g, 10 mmol)をジクロロメタン (150 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.90 g, 30 mmol)を加える。ここに15 mol%のA (0.70 g, 1.5 mmol)を加える。25 °Cで4時間撹拌する。反応混合物に水を加え、反応を停止させる。有機相をNaHCO3, H2O, 飽和食塩水で洗浄する。シリカゲルカラムクロマトグラフィー(CH2Cl2:Petroleum ether = 3:1-100:1)で精製し、目的化合物を得る。(収量0.57 g, 5.3. mmol, 収率53%)

 

誘導化

アルコキシ基を足がかりに誘導化が可能である。例えば過剰量のBBr3でメトキシ基をヒドロキシル基に誘導できる[3]。等量を調節すれば、1つだけのメトキシ基をヒドロキシル基に誘導できる。ヒドロキシル基はwilliamsonエーテル合成を使えば炭素鎖を導入できる。また、トリフラート化すればカップリング反応を受けることも可能である。超分子で用いられる一般的な環状分子(シクロデキストリン、カリックスアレーンなど)と同等以上に誘導化が容易である。この点は広く応用されている理由の一つである。

 

関連リンク

参考文献

  1. ジメトキシピラー[5]アレーン初期合成: Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022–5023, DOI: 10.1021/ja711260m
  2. ピラーアレーンの総説: (a) Ogoshi, T.; Yamagish, T. Bull. Chem. Soc. Jpn. 2013, 86, 312-332, DOI:10.1246/bcsj.20120245, (b) Ogoshi, T.; Yamagish, T. Chem.Commun. 2014, 50, 4776-4787, DOI: 10.1039/C4CC00738G, (c) Ogoshi, T.; Yamagishi, T.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937–8002 DOI: 10.1021/acs.chemrev.5b00765, (d) Cragg, P. J.: Sharma, K. Chem. Soc. Rev. 2012, 41, 597-607 DOI: 10.1039/C1CS15164A
  3. ジメトキシピラー[5]アレーン大量合成法: Ogoshi, T.; Aoki, T.; Kitajima, K.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Org. Chem. 2011, 76, 328–331, DOI: 10.1021/jo1020823
  4. モノ修飾ピラー[5]アレーンの合成: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 7164–7166, DOI: 10.1039/c1cc12333e
  5. 高次ピラーアレーン: Ogoshi, T.; Ueshima, N.; Sakakibara, F.; Yamagishi, T.; Haino, T. Org. Lett. 2014, 16,2896-2899, DOI:10.1021/ol501039u
  6. アルキル基の包接: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 10290-10292, DOI: 10.1039/C1CC14395F, Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. Angew. Chem. Int. Ed. 2015, 54, 9849–9852 DOI: 10.1002/anie.201503489 
  7. ジ(シクロヘキシルメトキシ)ピラー[6]アレーンの合成法: Ogoshi, T.; Ueshima, N.; Akutsu, T.; Yamafuji, D.; Furuta, T.; Sakakibara, F.; Yamagishi, T. Chem. Commun. 2014, 50, 5774-5777, DOI: 10.1039/C4CC01968G
  8. ジエトキシピラー[6]アレーン: Cao, J.; Shang, Y.; Qi, B.; Sun, X.; Zhang, L.; Liu, H.; Zhang, H.; Zhoua, X. RSC Adv. 2015, 5, 9993-9996, DOI: 10.1039/C4RA15758C

関連書籍

The following two tabs change content below.
Trogery12

Trogery12

博士(工学)。ポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. アピオース apiose
  2. 18F-FDG(フルオロデオキシグルコース)
  3. アスタキサンチン (astaxanthin)
  4. リコペン / Lycopene
  5. コランニュレン corannulene
  6. 【解ければ化学者】ビタミン C はどれ?
  7. シスプラチン しすぷらちん cisplatin
  8. ビタミンB12 /vitamin B12

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アザ-ウィティッヒ反応 Aza-Wittig Reaction
  2. 長井長義 Nagayoshi Nagai
  3. 第27回 生命活動の鍵、細胞間の相互作用を解明する – Mary Cloninger教授
  4. ジャーナル編集ポリシーデータベース「Transpose」
  5. クルクミン /curcumin
  6. 科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞
  7. 産業紙閲覧のすゝめ
  8. 有機合成化学協会誌2017年6月号 :創薬・糖鎖合成・有機触媒・オルガノゲル・スマネン
  9. ブラウンヒドロホウ素化反応 Brown Hydroboration
  10. メカノケミストリーを用いた固体クロスカップリング反応

関連商品

注目情報

注目情報

最新記事

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

Chem-Station Twitter

PAGE TOP