[スポンサーリンク]

ホスト分子

ピラーアレーン

[スポンサーリンク]

図1. ピラーアレーンの構造

概要

ジメトキシピラー[n]アレーン (Dimethoxypillar[n]arene、DMP[5]A ) [1], [2]は、(1,4-メトキシフェニレン-メチレン)を構成単位とする環状分子である。[n]は構成単位の数を示しており、主にn = 5もしくは6のものが使われている。それぞれジメトキシピラー[5]アレーンもしくはジメトキシピラー[6]アレーンと呼ぶ。メトキシ基をヒドロキシル基に誘導したものをパーヒドロキシピラー[n]アレーン(Perhydroxypillar[n]arene)と呼称する。

ジメトキシピラー[5]アレーンは、2008年に金沢大学(現・京都大学)の生越友樹先生 らによって初めて合成された。市販品から1段階かつ大量に合成できる点[3]、メトキシ基を足がかりに容易に誘導化できる点[3], [4]、電子不足かつ5 Å程度の物質を環内孔に補足できる点[2]から、超分子化学で広く用いられるようになった。より高次なピラーアレーンや[5]、誘導化したピラーアレーン、そしてその利用に関連した報告は、初の報告から指数関数的に増加している。

 

構造

図2. ピラーアレーンのキラリティ

1,4-ジメトキシベンゼンどうしを、それぞれの2および5位をメチレンで架橋した環状縮合体である。分子中心にn回回転軸をもつ。回転軸の垂直方向から見ると、”柱”状(Pillar)に芳香環(arene) が連なっていることからピラーアレーンと名付けられた。(類似のフェニレン-メチレンを構成単位とするカリックスアレーンは”杯”状(Calix)である。)

回転軸に沿った軸不斉をもち、構造単位に含まれる2つのメトキシ基の向きによって規定される(pS)体および(pR)体が存在する。

ジメトキシピラー[5]アレーンは約5 Å、ジメトキシピラー[6]アレーンは約6 Å程度の内部空孔をもつ。構成単位のジメトキシベンゼンが電子豊富であるため、その内部空孔は電子不足なものが取り込まれやすい。すなわち、アルキルアンモニウム、アルキルピリジニウム、アルキルニトリルなどが包接されやすい[2]。条件によっては直鎖無置換のアルキル基までも包接可能である[6]

 

合成法

ルイス酸(主にBF3·OEt)に触媒されるフリーデルクラフツ型の縮合反応によって合成される。1,4-ジアルコキシベンゼンとパラホルムアルデヒドをルイス酸存在下で撹拌するのみの簡便な合成法である。溶媒がテンプレートになり、選択的な環状生成物を与える。すなわち、適切なテンプレートの存在条件では、より高次なピラーアレーン類の合成も可能であることを示唆している。

 

ジメトキシピラー[5]アレーン[3]

1,4-ジメトキシベンゼン (1.38 g, 10 mmol)を1,2-ジクロロエタン (20 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.93 g, 30 mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、30 °Cで30分撹拌する。反応混合物をメタノールに加えて反応を停止させた後、生じた沈殿を濾取する。沈殿をクロロホルムに溶解させて不溶分を瀘別し、濾液とアセトン (CHCl3:Acetone = 1:1)から再結晶することでジメトキシピラー[5]アレーンを得る。(収量0.83 g, 7.1 mmol, 収率71%)

 

ジ(メチルシクロヘキシル)ピラー[6]アレーン[7]

窒素気流下で1,4-ジ(メチルシクロヘキシル)ベンゼン (300mg, 1.00mmol)をクロロシクロヘキサン (10 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (90mg, 2.98mmol)を加える。ここに1等量のBF3·OEt2をゆっくり加え、25 °Cで150分撹拌する。反応混合物をメタノールに加え、反応を停止させた後、生じた沈殿を濾取する。この沈殿をシリカゲルカラムクロマトグラフィー(CH2Cl2:Hexane = 1:3)で精製し、目的化合物を得る。(収量0.27 g, 0.14 mmol, 収率87%)

 

ジエトキシピラー[6]アレーン[8]

塩化鉄(III)と塩化コリンを2:1で混合し、100 °Cで緩やかに撹拌する。透明な暗茶色の液体が生成する(これをAとする)。1,4-ジエトキシベンゼン (1.66 g, 10 mmol)をジクロロメタン (150 mL)に溶かす。この溶液に3等量のパラホルムアルデヒド (0.90 g, 30 mmol)を加える。ここに15 mol%のA (0.70 g, 1.5 mmol)を加える。25 °Cで4時間撹拌する。反応混合物に水を加え、反応を停止させる。有機相をNaHCO3, H2O, 飽和食塩水で洗浄する。シリカゲルカラムクロマトグラフィー(CH2Cl2:Petroleum ether = 3:1-100:1)で精製し、目的化合物を得る。(収量0.57 g, 5.3. mmol, 収率53%)

 

誘導化

アルコキシ基を足がかりに誘導化が可能である。例えば過剰量のBBr3でメトキシ基をヒドロキシル基に誘導できる[3]。等量を調節すれば、1つだけのメトキシ基をヒドロキシル基に誘導できる。ヒドロキシル基はwilliamsonエーテル合成を使えば炭素鎖を導入できる。また、トリフラート化すればカップリング反応を受けることも可能である。超分子で用いられる一般的な環状分子(シクロデキストリン、カリックスアレーンなど)と同等以上に誘導化が容易である。この点は広く応用されている理由の一つである。

 

関連リンク

参考文献

  1. ジメトキシピラー[5]アレーン初期合成: Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022–5023, DOI: 10.1021/ja711260m
  2. ピラーアレーンの総説: (a) Ogoshi, T.; Yamagish, T. Bull. Chem. Soc. Jpn. 2013, 86, 312-332, DOI:10.1246/bcsj.20120245, (b) Ogoshi, T.; Yamagish, T. Chem.Commun. 2014, 50, 4776-4787, DOI: 10.1039/C4CC00738G, (c) Ogoshi, T.; Yamagishi, T.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937–8002 DOI: 10.1021/acs.chemrev.5b00765, (d) Cragg, P. J.: Sharma, K. Chem. Soc. Rev. 2012, 41, 597-607 DOI: 10.1039/C1CS15164A
  3. ジメトキシピラー[5]アレーン大量合成法: Ogoshi, T.; Aoki, T.; Kitajima, K.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Org. Chem. 2011, 76, 328–331, DOI: 10.1021/jo1020823
  4. モノ修飾ピラー[5]アレーンの合成: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 7164–7166, DOI: 10.1039/c1cc12333e
  5. 高次ピラーアレーン: Ogoshi, T.; Ueshima, N.; Sakakibara, F.; Yamagishi, T.; Haino, T. Org. Lett. 2014, 16,2896-2899, DOI:10.1021/ol501039u
  6. アルキル基の包接: Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. Chem. Commun. 2011, 47, 10290-10292, DOI: 10.1039/C1CC14395F, Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. Angew. Chem. Int. Ed. 2015, 54, 9849–9852 DOI: 10.1002/anie.201503489 
  7. ジ(シクロヘキシルメトキシ)ピラー[6]アレーンの合成法: Ogoshi, T.; Ueshima, N.; Akutsu, T.; Yamafuji, D.; Furuta, T.; Sakakibara, F.; Yamagishi, T. Chem. Commun. 2014, 50, 5774-5777, DOI: 10.1039/C4CC01968G
  8. ジエトキシピラー[6]アレーン: Cao, J.; Shang, Y.; Qi, B.; Sun, X.; Zhang, L.; Liu, H.; Zhang, H.; Zhoua, X. RSC Adv. 2015, 5, 9993-9996, DOI: 10.1039/C4RA15758C

関連書籍

[amazonjs asin=”4785332263″ locale=”JP” title=”超分子の化学 (化学の指針シリーズ)”] [amazonjs asin=”4882318067″ locale=”JP” title=”機能性超分子 (CMCテクニカルライブラリー)”] [amazonjs asin=”4759807829″ locale=”JP” title=”超分子化学”]
Avatar photo

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. サブフタロシアニン SubPhthalocyanine
  2. シラン Silane
  3. ジブロモインジゴ dibromoindigo
  4. トリニトロトルエン / Trinitrotoluene (TNT…
  5. グリチルリチン酸 (glycyrrhizic acid)
  6. サラシノール salacinol
  7. 白リン / white phosphorus
  8. ボルテゾミブ (bortezomib)

注目情報

ピックアップ記事

  1. キムワイプをつくった会社 ~キンバリー・クラーク社について~
  2. 錯体と有機化合物、触媒はどっち?
  3. Biotage Selekt+ELSD【実機レビュー】
  4. 機能性ナノマテリアル シクロデキストリンの科学ーChemical Times特集より
  5. 第37回 糖・タンパク質の化学から生物学まで―Ben Davis教授
  6. 化学企業のグローバル・トップ50が発表【2022年版】
  7. 高井・内本オレフィン合成 Takai-Utimoto Olefination
  8. 鉄触媒を用いて効率的かつ選択的な炭素-水素結合どうしのクロスカップリング反応を実現
  9. 【21卒イベント 大阪開催2/26(水)】 「化学業界 企業合同説明会」
  10. 中国へ行ってきました 西安・上海・北京編②

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP