[スポンサーリンク]

その他

嗚呼、美しい高分子の世界

[スポンサーリンク]

先日、美しい分子構造の高分子が合成できた為、研究室内で自慢していたところ、ラボメートに言われた一言、二言。

「へぇ〜。まあかっこいいかもしれないけど、その物性は?」

「物性に特徴がないなら意味がないよね。」

……はい。高分子に限らず、化学合成を専門に勤しむ方なら一度は経験があると思います。材料学的・生物学的応用に繋がらない合成は白い目で見られてしまう事がありますよね。(特に高分子化学分野は応用思考の方が多いです。工業から発展してきた分野だからでしょう。)

世の中に「役に立つ」ことが研究者の責務であるならば、複雑で美しい化合物を合成するだけの研究が評価されないのは当然なのかもしれません。

でもしかし!私個人は分子の美しさ、そして、その美しい分子を合成する格好よさも大切にして行きたいです。実際、美しい化合物は往々にして、合成時には予測していない素晴らしい応用性を示す事もありますしね。

そこで本記事では「構造の美しさ」だけに焦点を当て、私の心に響いた高分子を紹介していきます。数多くの候補のうち、7つに絞り込みました。早速、見ていきましょう!(明示されていない一部の化合物名は筆者が独断でつけさせていただきました。)

1.美しい一次構造の世界「ナノプシャンポリマー」

図1. ナノプシャンポリマー(実際は3種類の手の繋がり方が混ざっている)

ただ、美しい化合物を作ることだけを目指して合成された分子があります。「ナノプシャン」James Tour教授によって合成された何の役にも立たない、でも可愛らしいこの分子を知っている方は多いのではないでしょうか?

Tour教授は、このナノプシャンを重合させることにも成功しております。

それがこのナノプシャンポリマー。NanoKid とNanoAthleteが手を繋いだ、優しい形をしています。

図2. NanoKid(左)とNanoAthlete(右)

子供たちが手を繋いで地球一周する平和のイラストを思い浮かべたのは私だけでしょうか?

(わからない人は、「子供 平和 イラスト」で画像検索してみてください)

2.美しい高次構造の世界「ポリトリチルメタクリレート」

図3. ポリトリチルメタクリレート

先ほどのナノプシャンポリマーは、構造式が美しかったですが、ポリマーの魅力はその一次構造だけではありません!

分子全体の立体的な形も芸術性に関わってきます。例えば螺旋構造。生体分子ではDNAやタンパク質αヘリックスに見られます。シンプルに見えながら複雑なその構造は、実にエレガントですよね。

これを合成高分子にて実現したのが、岡本佳男名古屋大学特別招聘教授のポリトリチルメタクリレート。昨今、日本国際賞をとり、話題になりました。

こんなシンプルな構造が、トリチル基の立体障害で螺旋を巻くのです。すごい!現在はポリフェニルアセチレンやポリキノキサリンなど超多様に発見されている合成螺旋高分子の世界。ぜひのぞいてみてください。

3.美しい共役ポリマーの世界「カルボランポリマー」

図4.カルボランポリマー

共役化合物に芸術性を感じる方は多いでしょう。私の周りでも「ベンゼンは美しい」と語る理系の人は多いです。

共役系が高分子全体に広がった、共役ポリマーは電子材料や発光材料として役に立つことから、高分子界の一大分野です。その中でも特に私が美しいと思った高分子がこれです。京都大学中條善樹名誉教授によるカルボラン含有ポリマー。

なんとホウ素クラスター、カルボランが主鎖に含まれており、その超芳香族性から折り曲がりつつも共役系を崩さない構造になっております。なぜこれをポリマーにしようと思ったのでしょうか。

またこちらの高分子、凝集により発光が誘起されるAIE(Aggregation Induced Emission)特性をもち、固体状態で発光するとのことです。つまりミクロな視点で見てもマクロな視点で見ても綺麗な分子。ゾクゾクしますよね。

4.美しい精密合成の世界「パリトキシン」

図5.パリトキシン

オイっこれはポリマーじゃないと怒られてしまいそうですが。。。分子量2680.17の超巨大分子パリトキシンもこちらで紹介させていただきます。(実際は繰り返し単位がない以上、IUPACの高分子の定義から逸脱していますが悪しからず。)

シンプルに大きくってかっこいい!

繰り返し単位を持たない天然分子としては最大級のこの化合物、1994年にハーバード大学の岸義人名誉教授によって全合成が達成されております。

64個ものキラル中心を持つ化合物を作る、この精密性は、今はまだ高分子合成の技術では達成できない、有機合成化学の領域でしょうね。

しかし、高分子精密重合(分子量制御/モノマー配列制御/立体規則性制御)の研究は高分子界でも特に発展してきている分野です。数十年後にはこのような複雑化合物さえ、高分子反応で連鎖的に合成可能になるだろうと予想しております。

5.美しい有機-高分子ハイブリッド合成の世界「ポリラダラン」

図6. ポリラダラン

シクロブタンが連続したラダラン骨格はその構造の面白さ、合成の難儀さからケムステでも取り上げられてきました。

こちら、1ユニット合成するだけでも大変な化合物を、重合してしまったクレイジー(褒め言葉)なポリマーがこちら。

美しい骨格のモノマーを重合したのですから、ポリマーも麗しいに決まっていますよね。Scienceの表紙になった為、ご存知の方も多いと思います。

Stanford大学のNoah Burns助教授とYan Xia助教授によって合成されました。つまり低分子合成、高分子合成のライジングスター2方の合作。当時論文を見つけて震えていた私は、著者を見て、なるほどなぁと納得したのを覚えています。

図7. ポリラダランの開裂。超音波振動をかける長さに応じて、ポリアセチレン部位が広がる。(出典: [3])

加えてこのポリマー、超音波振動でポリマー中央部が開裂し、ポリアセチレン含有トリブロックターポリマーへと変形します(ポリアセチレンユニットを含むコポリマーは通常合成困難とのことです)。ただでさえ美しい子がメカノケミストリー要素も押さえてくるなんて、、、

可愛い女の子が旅行先で、普段はつけていないメガネをかけて新鮮味を出してくる感じでしょうか。(筆者はそういうの大好きです。)

精密なモノマー設計をした高分子が比類ない特徴を示すことを明示した本研究。有機合成に自身がある皆さん、モノマー合成してみませんか?

6.美しい超分子ポリマーの世界「ABC周期配列ポリマー」

図8. ABC周期配列ポリマー

超分子って名前がまずかっこいいですよね。こちらに示したポリマーは、Biscalix[5]arene-C60
、Bisporphyrin-TNF 、Hamilton’s hydrogen-bondingの3つの超分子結合で、モノマー配列の定まった三元共重合を達成しています。広島大学灰野教授によって合成されました。名前だけでなく構造もかっこいい。。。何を目指して作ったポリマーかは、ごめんなさい、正直わかりませんでしたが、逆に言えばポリマー構造、合成の面白みだけで私の心を掴んだということ。素敵。過去にケムステでも紹介されています

重合は基本一気に進むため、モノマー配列を精密に制御するのは非常に難しいとされています。戦略が考案される中、3つの異なった超分子結合でモノマーの並ぶ順番を定める発想はシンプルながらも見ていて気持ちいいですね。

すでに超分子ポリマーは高分子化学の一大分野です。しかし今後、高分子3次元構造の精密構築が期待される中、超分子の知識はより切実に高分子精密合成に必要になってくるでしょう。

7.美しい高分子トポロジーの世界「ポリ[n]カテナン」

図9. ポリ[n]カテナン (出典[5])

こちらが私イチオシのポリマーとなります。カテナンを並べたポリ[n]カテナン!2種類の環状分子が鎖状に並んだ構造を取っています。大トリにふさわしい豪快な構造。Chicago大学のStuart J. Rowan教授によって合成されました。

架橋のないLinear状のものだと最大DP(重合度)=27。一見低く見えますが、輪っか一分子がそこそこのサイズ(Mw=1500〜1700)であることを踏まえると、凄い。

このように高分子を一本の紐のように考えて、様々な形(今回の場合、鎖型)を作る分野、高分子トポロジー化学は近年、非常に盛り上がっています。

いずれあやとりの要領で、箒型、東京タワー型ポリマーが生まれてくるのでしょうか?なんとも未来が楽しみです。

 

以上、7つの美しいポリマーを紹介させていただきました。どうでしたか?少しでも一緒に興奮してくださる方がいれば幸いです。今回は7つに絞りましたが、本当はもっともっと紹介したかった。。。高分子合成は比較的新しく、未だ制限が多い未開拓の分野です。しかし裏を返せば、今後より発展し、精密な高次構造が創られてくる事が期待されます。もし他に、美しい高分子を発見されましたらコメント欄などで御紹介ください。私はラボで心躍らす事でしょう。嗚呼、美しい高分子の世界へと。

参考文献

  1. Tour, J. M.; Chanteau, S. H. J. Org. Chem. 2003, 68, 8750-8766. DOI:10.1021/jo0349227
  2. Chujo, Y.; Kokado, K. Macromolecules. 2009, 42, 1418-1420. DOI:10.1021/ma8027358
  3. Chen, Z.; Mercer, J. A. M.; Zhu, X.; Romaniuk, J. A. H.; Pfattner, R.; Cegelski, L.; Martinez, T. D.; Burns, N. Z.; Xia, Y. Science 2017, 357, 475. DOI: 10.1126/science.aan2797
  4. Hirao, T.;  Kudo, H.; Amimoto, T.; Haino, T. Nature Commun. 20178, 634. DOI: 10.1038/s41467-017-00683-5
  5. Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R.J.; Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Science 2017 358, 1434–1439 DOI: 10.1126/science.aap7675

関連書籍

関連リンク

https://www.sankei.com/life/news/190203/lif1902030003-n1.html: 岡本教授の螺旋高分子研究について紹介されている。

http://www.org-chem.org/yuuki/nanoputian/nanoputian.html: 有機化学美術館。ナノプシャンについて詳細が記載されてある(現在アクセス不可)

Maitotoxin

投稿者の記事一覧

学生。高分子合成専門。低分子・高分子を問わず、分子レベルでの創作が好きです。構造が格好よければ全て良し。生物学的・材料学的応用に繋がれば尚良し。Maitotoxinの全合成を待ち望んでいます。

関連記事

  1. セミナー/講義資料で最先端化学を学ぼう!【有機合成系・2016版…
  2. 完熟バナナはブラックライトで青く光る
  3. 有機合成プロセスにおけるマテリアルズ・インフォマティクスの活用
  4. Carl Boschの人生 その9
  5. Reaxys Prize 2017ファイナリスト発表
  6. 「機能性3Dソフトマテリアルの創出」ーライプニッツ研究所・Möl…
  7. ビシナルジハライドテルペノイドの高効率全合成
  8. つぶれにくく元にも戻せる多孔性結晶の開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Hantzschエステル:Hantzch Ester
  2. 徹底比較 特許と論文の違い ~その他編~
  3. 第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授
  4. ポンコツ博士の海外奮闘録XVII~博士,おうちを去る~
  5. 磁性流体アートの世界
  6. 【第一回】シード/リード化合物の創出に向けて 1/2
  7. キセノン (xenon; Xe)
  8. 神戸製鋼所が特殊合金粉末を開発 金属以外の多様な材料にも抗菌性付加
  9. 第54回「光を使ってレゴブロックのように炭素と炭素を繋げる」吉見 泰治 教授
  10. レドックスフロー電池 Redox-Flow Battery, RFB

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP