[スポンサーリンク]

化学者のつぶやき

GFPをも取り込む配位高分子

配位高分子と呼ばれる材料をご存じでしょうか?
金属イオンと結合する手を持った「配位子」と呼ばれる有機物があります。
結合する手を両側に向けると、金属-配位子-金属-配位子-金属・・・と無限につながった一種の高分子が得られます。
金属の結合方向は有機物と異なっているため、普通のプラスチックとは異なり、面白い配列を構築することができます。
さらに金属イオンに「上下・左右・前後」から配位子を結合させると、下図のようなジャングルジム型の構造体を作ることができます。
これを配位高分子、特にスカスカに孔があいているものを多孔性配位高分子(PCP)と呼びます。

配位子の長さを変えると、孔の大きさも簡単に変えられることから、ある種のガス分子だけを取り出したりするのに便利だと考えられ、最近盛んに研究されています。

配位子とは通常の有機分子、せいぜい1~2 nm 程度の大きさです。
ということはジャングルジムの隙間も1nmか、それより小さい穴になります。
そのため小さい穴を作るのが得意な材料です。

では大きな孔を作ることはできないのでしょうか。

これに答えるべく立ち上がったのが、この世界の第一人者、O. M. YaghiM. O’Keeffeらのグループです。

Large-Pore Apertures in a Series of Metal-Organic Frameworks.
H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi
Science 2012, 336, 1018-1023. DOI:10.1126/science.1220131

 

その手段とは単純明快、細長い配位子をひたすら有機合成したのです。
最大でベンゼン環11個、50Åという長い配位子を合成し、金属イオンと混ぜて配位高分子の合成を行いました。

ligands.png

それにより、6角形の蜂の巣構造の孔、それも80Åもの細孔を有する配位高分子を得ることに成功しました。

余談ですが、配位高分子の合成法は、130℃で一晩煮込むだけ。とっても簡単です。
配位子の合成(有機合成)の方がよっぽど面倒です。
こういう細長い配位子を作るためのファーストチョイスは鈴木-宮浦カップリングで、ここでもそれが用いられています。

largepore.jpg
ナノサイズの細孔を持っている材料として古くから知られているものに、活性炭とゼオライトがあります。
配位高分子とこれら昔からの吸着剤を比較してみると、

  1. 配位高分子の孔を作る壁は分子一枚分と薄く、ゼオライトと比べて少量で、大量のガスを吸着できる。
  2. 活性炭と比べて細孔径が揃っているため、特定のガスだけ吸着させられる。

という特徴があります。

「ふるい」に例えると、
ゼオライト:孔よりも壁の方が多い「ふるい」
活性炭:目の揃っていない「ふるい」
多孔性配位高分子:目の揃ったスカスカの「ふるい」

というところでしょうか。

つまり、今回の成果は
「いろんな目の細かさの、目の揃ったふるい」を作ってやったぜ!
「最小で8Å、最大で80Åの、目の揃ったふるい」を作ってやったぜ!
ということなわけです。

それでは「80オングストロームの目」で、どんなものが分けられるのでしょうか?
Yaghiらは生体分子に目を向けています。
ビタミンB-12(最大径で27Å)、ミオグロビン(最大径44Å)、緑色蛍光タンパク質(GFP、最大径45Å)
といった分子をこれら配位高分子に吸着させると、穴が大きいものにだけ取り込まれることがわかりました。
ただし、細孔の表面が疎水性だと取り込まれないなど、「ふるいの性質」にも依存するようです。

 

とはいえ、うまい孔を作ってやれば、

「特定のタンパクや生体物質だけを取り込むような細孔」

が作れそうだということがわかったわけで、医療検査などへ使えるのではないかと期待してしまいます。

(図はScience論文より引用)

 

関連書籍

 

外部リンク

The following two tabs change content below.
大学教員

関連記事

  1. 大学入試のあれこれ ①
  2. 人が集まるポスター発表を考える
  3. オープンアクセスジャーナルの光と影
  4. 2014年ノーベル化学賞・物理学賞解説講演会
  5. 未解明のテルペン類の生合成経路を理論的に明らかに
  6. MOFはイオンのふるい~リチウム-硫黄電池への応用事例~
  7. 元素名を名字にお持ちの方〜
  8. アイルランドに行ってきた①

コメント

  • トラックバックは利用できません。

  • コメント (1)

  1. 分子を組み立てて機能を生み出す. #tnchem

注目情報

ピックアップ記事

  1. Chemistry on Thanksgiving Day
  2. メーヤワイン・ポンドルフ・ヴァーレイ還元 Meerwein-Ponndorf-Verley (MPV) Reduction
  3. 大正製薬、女性用の発毛剤「リアップレディ」を来月発売
  4. トロスト酸化 Trost Oxidation
  5. YADOKARI-XG 2009
  6. 駅トイレ光触媒で消臭
  7. シュミット転位 Schmidt Rearrangement
  8. そこまでやるか?ー不正論文驚愕の手口
  9. 私がケムステスタッフになったワケ(3)
  10. ガーナーアルデヒド Garner’s Aldehyde

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始

2017年8月14日、米国化学会(ACS)は、化学分野のプレプリントサーバー“ChemRxiv”のベ…

光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発

第115回のスポットライトリサーチは、東京工業大学 理学院 化学系 博士後期課程2年の栗木 亮さんに…

誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)

概要悪い例とよい例を比較しながら,実験ノートを具体的にどう書けばよいのかを懇切丁寧に説明する…

神経変性疾患関連凝集タンパク質分解誘導剤の開発

第114回のスポットライトリサーチは、東京大学大学院薬学系研究科博士後期課程2年の山下 博子(やまし…

銀イオンクロマトグラフィー

以前、カラムクロマトグラフィーの吸引型手法の一つ、DCVCについてご紹介致しました。前回は操作に…

ニセ試薬のサプライチェーン

偽造試薬の一大市場となっている中国。その製造・供給ルートには、近所の印刷店など、予想だにしない人々ま…

Chem-Station Twitter

PAGE TOP